18.600 Recitation 10

Recitation Instructor: Vishesh Jain
Partial solutions available at math.mit.edu/~visheshj
Thursday, Nov. 15th, 2018
Solution Problem 1. (a) We have

$$
H=\frac{X_{1}+\cdots+X_{n}}{n}
$$

where X_{1}, \ldots, X_{n} are i.i.d. samples with the same distribution as X. Therefore, $\mathrm{E}[H]=$ $\mathrm{E}[X]=h$ (by linearity of expectation), whereas by independence of X_{1}, \ldots, X_{n},

$$
\operatorname{Var}(H)=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\frac{\operatorname{Var}(X)}{n} .
$$

Hence, $\sigma(H)=\frac{1.5}{\sqrt{n}}$.
(b) From the previous part, we want to find the minimum value of n such that $1.5 / \sqrt{n}<0.01$. This means $\sqrt{n}>150$ i.e. $n>22500$. So, the minimum n is 22501 .
(c) From Chebyshev's inequality, we know that

$$
\operatorname{Pr}(|H-h| \geq c) \leq \frac{\sigma(H)^{2}}{c^{2}} \leq \frac{2.25}{c^{2} n}
$$

We would like to take $c=0.05$ and the right hand side to be ≤ 0.01. Plugging this in, we get

$$
\frac{2.25}{(0.05)^{2} n} \leq 0.01
$$

i.e. the minimum is $n=225 /(0.05)^{2}=90000$.
(d) More generally, let us prove the following: if X is a random variable supported in $[m, M]$, then $\sigma[X] \leq \frac{(M-m)}{2}$. To see this, note that

$$
\begin{aligned}
f(t):=\mathrm{E}\left[(X-t)^{2}\right] & =\mathrm{E}\left[((X-\mu)+(\mu-t))^{2}\right] \\
& =\operatorname{Var}[X]+(\mu-t)^{2}
\end{aligned}
$$

and hence is minimized at $t=\mu$. Therefore, we get

$$
\begin{aligned}
\operatorname{Var}[X] & \leq f((m+M) / 2) \\
& =\mathrm{E}\left[(X-(m+M) / 2)^{2}\right] \\
& =\frac{1}{4} \mathrm{E}\left[\{(X-m)+(X-M)\}^{2}\right] .
\end{aligned}
$$

Note that since $X-m \geq 0$ and $X-M \leq 0$, we have $\{(X-m)+(X-M)\}^{2} \leq$ $\{(X-m)-(X-M)\}^{2}=(M-m)^{2}$, which gives the desired conclusion.

Solution Problem 2. (a) It is clear that the MGF does not exist for $|t| \geq 1$. Let $|t|<1$. Then,

$$
\begin{aligned}
\mathrm{E}\left[e^{t X}\right] & =\frac{1}{2} \int_{-\infty}^{\infty} e^{t x} e^{-|x|} d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{(t-1) x} d x+\frac{1}{2} \int_{-\infty}^{0} e^{(t+1) x} d x \\
& =\frac{1}{2}\left(-\frac{1}{(t-1)}+\frac{1}{(t+1)}\right) \\
& =\left(\frac{1}{1-t^{2}}\right) \\
& =1+t^{2}+t^{4}+t^{6}+\ldots
\end{aligned}
$$

From this, we see that $\mathrm{E}[X]=0$ (this is also clear by symmetry) and $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]=2$.
(b) We know that the MGF of $\mathcal{N}\left(\mu, \sigma^{2}\right)=\exp \left(\frac{\sigma^{2} t^{2}}{2}+\mu t\right)$, from which we see that the required MGF is $\exp \left(t^{2}\right)$.
(c) By independence, we have

$$
\begin{aligned}
\mathrm{E}\left[e^{t S_{n}}\right] & =\mathrm{E}\left[\exp \left(t X_{1} / \sqrt{n}+\cdots+t X_{n} / \sqrt{n}\right)\right] \\
& =\mathrm{E}\left[\prod_{i=1}^{n} \exp \left(t X_{i} / \sqrt{n}\right)\right] \\
& =\prod_{i=1}^{n} \mathrm{E}\left[\exp \left(t X_{i} / \sqrt{n}\right)\right] \\
& =\prod_{i=1}^{n}\left(\frac{1}{1-(t / \sqrt{n})^{2}}\right) \\
& =\left(1-\frac{t^{2}}{n}\right)^{-n} .
\end{aligned}
$$

As $n \rightarrow \infty$, this converges to $\exp \left(t^{2}\right)$.
Solution Problem 3. Yes. Recall the derivation of Chebyshev's inequality:

$$
\operatorname{Pr}(|X-\mathrm{E}[X]| \geq c)=\operatorname{Pr}\left(|X-\mathrm{E}[X]|^{2} \geq c^{2}\right) \leq \mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right] / c^{2}=\sigma^{2} / c^{2}
$$

This shows that the inequality is tight if and only if

$$
c^{2} \operatorname{Pr}\left(|X-\mathrm{E}[X]|^{2} \geq c^{2}\right)=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\operatorname{Var}(X) .
$$

Let $X=\mu+c$ with probability $p, X=\mu-c$ with probability p, and $X=\mu$ with probability $1-2 p$, for p to be decided below. Then, we see that $\mathrm{E}[X]=\mu$ and $\operatorname{Var}[X]=2 p c^{2}=$ $c^{2} \operatorname{Pr}\left(|X-\mathrm{E}[X]|^{2} \geq c^{2}\right)$. So, if we want the variance to be equal to σ^{2}, we must take $p=\frac{\sigma^{2}}{2 c^{2}}$, which makes sense since $c \geq \sigma$.

