18.600 Recitation 11
Recitation Instructor: Vishesh Jain Partial solutions available at math.mit.edu/ \sim visheshj Thursday, Nov. 29th, 2018

Solution Problem 1. (a) The number of undergrads who enroll in the class is distributed as $\operatorname{Bin}(4000,0.05)$, which we approximate by $\mathcal{N}(4000 \times 0.05,4000 \times 0.05 \times 0.95)=\mathcal{N}(200,190) \sim$ $200+\sqrt{190} \mathcal{N}(0,1)$. Therefore, the probability that 250 or more students enroll is approximately the probability that $\mathcal{N}(0,1) \geq 50 / \sqrt{190}$, which is $1-\Phi(50 / \sqrt{190}) \approx 0.00014$.
(b) Let N denote the number of undergrads who enroll in the class. By Markov's inequality, we have $\operatorname{Pr}[N \geq 250] \leq \mathrm{E}[N] / 250=200 / 250=0.8$.
(c) We have, for any $t>0$, that $\operatorname{Pr}[N \geq 250]=\operatorname{Pr}[\exp (t N) \geq \exp (250 t)] \leq e^{-250 t} M_{N}(t)=$ $e^{-250 t}\left(0.05 e^{t}+0.95\right)^{4000}$. Substituting $t=0.2$, this is ≈ 0.00257.

Solution Problem 2. (a) Note that the transition matrix is given by

$$
P=\left[\begin{array}{cccc}
0 & 1-p & 0 & p \tag{1}\\
p & 0 & 1-p & 0 \\
0 & p & 0 & 1-p \\
1-p & 0 & p & 0
\end{array}\right]
$$

where $p_{i j}$ is the probability of transitioning from state i to state j. Therefore, the distribution of X_{n}, starting from $X_{0}=1$, is given by $(1,0,0,0) P^{n}$.
(b) No, the Markov chain is not ergodic. If n is even, then X_{n} must be 1 or 3 , while if n is odd, then X_{n} must be 2 or 4 .
(c) The new transition matrix is given by

$$
P=\left[\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 1 / 3 \tag{2}\\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 1 / 3
\end{array}\right]
$$

It is easy to see that this new Markov chain is ergodic. Therefore, we know that the distribution of X_{k}, as k goes to infinity, converges to the (unique) stationary distribution, which in our case is given by ($1 / 4,1 / 4,1 / 4,1 / 4$) (it is the unique solution to the system of equations: $2 a_{1}=a_{2}+a_{4} ; 2 a_{2}=a_{1}+a_{3} ; 2 a_{3}=a_{2}+a_{4} ; 2 a_{4}=a_{1}+a_{3} ; a_{1}+a_{2}+a_{3}+a_{4}=1$).

