18.600 Recitation 12

Recitation Instructor: Vishesh Jain Partial solutions available at math.mit.edu/ \sim visheshj

Thursday, Dec. 6th, 2018
Solution Problem 1. (a) Since X and Y are independent, $H(X, Y)=H(X)+H(Y)=2 \log _{2}(6)$.
(b) $H(Z)=(1 / 36) \log _{2}(36)+(2 / 36) \log _{2}(36 / 2)+\cdots+(6 / 36) \log _{2}(36 / 6)+(5 / 36) \log _{2}(36 / 5)+$ $\cdots+(1 / 36) \log _{2}(36)$.
(c) $H_{X}(Z)=\log _{2}(6)$.
(d) $H(X, Z)=H(X)+H_{X}(Z)=2 \log _{2}(6)$. We could have deduced this directly from part (a) by noting that knowing (X, Z) is equivalent to knowing (X, Y).

Solution Problem 2. (a) By Shannon's Noiseless Coding Theorem, Bob can encode his message using at least $H(X)$ and at most $H(X)+1$ bits in expectation. In our case, $H(X)=$ $(1 / 16) \log _{2}(16)+(4 / 16) \log _{2}(16 / 4)+(6 / 16) \log _{2}(16 / 6)+(4 / 16) \log _{2}(16 / 4)+(1 / 16) \log _{2}(16) \approx$ 2.03 .
(b) We can use a Huffman code. For instance, $0 \mapsto 0000,1 \mapsto 001,2 \mapsto 1,3 \mapsto 01,4 \mapsto 0001$
(c) Let $Y=\left(X_{1}, \ldots, X_{100}\right)$. Then, $H(Y)=100 H(X)$. By Shannon's Noiseless Coding Theorem, Bob can encode his message using at least $H(Y)$ and at most $H(Y)+1$ bits in expectation. Therefore, the expected number of bits per symbol is between $H(X)$ and $H(X)+(1 / 100)$.

Solution Problem 3. (a) Note that

$$
\mathbf{K L}(p \| q)=\sum_{i=1}^{n} p_{i} \cdot\left(-\log _{2}\left(q_{i} / p_{i}\right)\right) \geq-\log _{2}\left(\sum_{i=1}^{n} p_{i} \cdot\left(q_{i} / p_{i}\right)\right)=-\log _{2}(1)=0 .
$$

Here, we have used the convexity of the function $x \mapsto-\log (x)$. Equality holds if and only if equality holds in Jensen's inequality, which holds if and only if q_{i} / p_{i} does not depend on i, which is true if and only if $p=q$.
(b) We have

$$
\mathbf{K L}(p \| \mathrm{Unif})=\sum_{i=1}^{n} p_{i} \log _{2}\left(n p_{i}\right)=-H(p)+\log _{2}(n) .
$$

Hence, by the previous part, we have $\log _{2}(n) \geq H(p)$, and equality holds if and only if $p=$ Unif.

Solution Problem 4. Following the proof of the Chernoff bound, we have that for any $\lambda>0$,

$$
\operatorname{Pr}[X \geq(p+\delta) n]=\operatorname{Pr}[\exp (\lambda X) \geq \exp (\lambda(p+\delta) n)] \leq \exp (-\lambda(p+\delta) n) \mathrm{E}[\exp (\lambda X)] .
$$

Moreover, we know that

$$
\mathrm{E}[\exp (\lambda X)]=\left(p e^{\lambda}+(1-p)\right)^{n} .
$$

Minimizing the quantity

$$
\left(\frac{p e^{\lambda}+(1-p)}{e^{\lambda(p+\delta)}}\right)^{n}
$$

over $\lambda>0$ gives us

$$
e^{\lambda}=\frac{(1-p)(p+\delta)}{p(1-p-\delta)}
$$

and substituting this into the previous expression shows that the minimum is

$$
\left(\left(\frac{p}{p+\delta}\right)^{p+\delta}\left(\frac{1-p}{1-p-\delta}\right)^{1-p-\delta}\right)^{n}
$$

Finally, note that

$$
\left(\frac{p}{p+\delta}\right)^{p+\delta}\left(\frac{1-p}{1-p-\delta}\right)^{1-p-\delta}=\exp (-\mathbf{K L}(\operatorname{Ber}(p+\delta) \| \operatorname{Ber}(p)))
$$

