18.600 Recitation 3

Recitation Instructor: Vishesh Jain
math.mit.edu/~visheshj
Thursday, Sep. 27th, 2018
Solution Problem 1. Let's start by computing the pmf of X. For $0 \leq i \leq 4$, we have

$$
\mathbb{P}[X=i]=\frac{\binom{4}{i}}{16}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}[Y] & =\sum_{i=0}^{4}\left(i(i-2)^{2}(i-4)\right) \frac{\binom{4}{i}}{16} \\
& =\left(1(1-2)^{2}(1-4)\right) \frac{\binom{4}{1}}{16}+\left(3(3-2)^{2}(3-4)\right) \frac{\binom{4}{3}}{16} \\
& =-\frac{12}{16}+-\frac{12}{16} \\
& =-\frac{3}{2} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\mathbb{E}\left[Y^{4}\right] & =\sum_{i=0}^{4}\left(i(i-2)^{2}(i-4)\right)^{4} \frac{\binom{4}{i}}{16} \\
& =81 \times \frac{4}{16}+81 \times \frac{4}{16} \\
& =\frac{81}{4} .
\end{aligned}
$$

Note that this is not equal to $\mathbb{E}[Y]^{4}$.
Solution Problem 2. Method 1: Direct computation using the probability mass function.
Let X_{i} be the random variable which is equal to 1 if the fan makes the $i^{\text {th }}$ throw and is 0 if the fan misses the $i^{\text {th }}$ throw. Let W be the amount of money (in dollars) won by the fan. Then,

$$
W=500\left(X_{1}+X_{2}+X_{3}\right) .
$$

Since the throws are independent, we have

$$
\begin{aligned}
\mathbb{P}[W=0] & =.8 \times .8 \times .5=.32 \\
\mathbb{P}[W=500] & =.2 \times .8 \times .5+.8 \times .2 \times .5+.8 \times .8 \times .5=.48 \\
\mathbb{P}[W=1000] & =.2 \times .2 \times .5+.8 \times .2 \times .5+.2 \times .8 \times .5=.18 \\
\mathbb{P}[W=1500] & =.2 \times .2 \times .5=.02
\end{aligned}
$$

Therefore, we get

$$
\mathbb{E}[W]=.48 \times 500+.18 \times 1000+.02 \times 1500=450
$$

Method 2: Use linearity of expectation.
We have

$$
\mathbb{E}[W]=500 \mathbb{E}\left[X_{1}+X_{2}+X_{3}\right]
$$

$$
\begin{aligned}
& =500\left(\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]\right) \\
& =500(.2+.2+.5) \\
& =500(.9) \\
& =450 .
\end{aligned}
$$

Solution Problem 3. Let D_{1} and D_{2} denote the (independent) random variables recording the outcomes of the two fair dice. Then, $X=D_{1}+D_{2}$.
(i) To compute the pmf of X, note that there are 36 outcomes, all of which are equally probable. Moreover, for $1 \leq i \leq 6$, the number of outcomes for which $X\left(=D_{1}+D_{2}\right)=i$ is exactly the number of solutions to the equation $x_{1}+x_{2}=i$, where $6 \geq x_{1}, x_{2} \geq 1$ are integers. If $2 \leq i \leq 6$, there are $(i-1)$ such solutions. On the other hand, if $7 \leq i \leq 12$, there are $(13-i)$ such solutions. Hence, we see that

$$
\mathbb{P}[X=i]= \begin{cases}i-1 & 2 \leq i \leq 6 \\ 13-i & 7 \leq i \leq 12\end{cases}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=2}^{6} \frac{i(i-1)}{36}+\sum_{i=7}^{12} \frac{i(13-i)}{36} \\
& =\sum_{i=2}^{6} \frac{i^{2}-i}{36}+\sum_{i=7}^{12} \frac{13 i-i^{2}}{36} \\
& =\frac{70+182}{36} \\
& =7 .
\end{aligned}
$$

(ii) The problem becomes much easier using linearity of expectation. Note that $\mathbb{E}\left[D_{1}\right]=$ $\mathbb{E}\left[D_{2}\right]=\frac{1}{6} \sum_{i=1}^{6} i=\frac{7}{2}$. Therefore,

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[D_{1}+D_{2}\right] \\
& =\mathbb{E}\left[D_{1}\right]+\mathbb{E}\left[D_{2}\right] \\
& =2 \times(7 / 2) \\
& =7 .
\end{aligned}
$$

(iii) Since we already know the pmf of X, we could directly compute

$$
\mathbb{E}\left[X^{2}\right]=\sum_{i=2}^{6} \frac{i^{2}(i-1)}{36}+\sum_{i=7}^{12} \frac{i^{2}(13-i)}{36}=\frac{329}{6} .
$$

As before, linearity of expectation gives an easier way out. We have,

$$
\begin{aligned}
\mathbb{E}\left[\left(D_{1}+D_{2}\right)^{2}\right] & =\mathbb{E}\left[D_{1}^{2}+D_{2}^{2}+2 D_{1} D_{2}\right] \\
& =\mathbb{E}\left[D_{1}^{2}\right]+\mathbb{E}\left[D_{2}^{2}\right]+2 \mathbb{E}\left[D_{1} D_{2}\right] \\
& =\mathbb{E}\left[D_{1}^{2}\right]+\mathbb{E}\left[D_{2}^{2}\right]+2 \mathbb{E}\left[D_{1}\right] \mathbb{E}\left[D_{2}\right],
\end{aligned}
$$

where the last equality follows by the independence of the random variables D_{1} and D_{2}. We already computed $\mathbb{E}\left[D_{1}\right]=\mathbb{E}\left[D_{2}\right]=(7 / 2)$. Moreover, we also have $\mathbb{E}\left[D_{1}^{2}\right]=\mathbb{E}\left[D_{2}^{2}\right]=$ $\frac{1}{6} \sum_{i=1}^{6} i^{2}=\frac{91}{6}$. Putting everything together, we get

$$
\mathbb{E}\left[X^{2}\right]=\frac{91}{6} \times 2+2 \times \frac{7}{2} \times \frac{7}{2}
$$

$$
\begin{aligned}
& =\frac{91}{3}+\frac{49}{2} \\
& =\frac{329}{6} .
\end{aligned}
$$

Solution Problem 4. (i) Method 1: Direct computation using the probability mass function.
Let B denote the random variable recording the number of bad apples we have chosen. Let's compute the pmf of B. There are n^{k} ways to choose k apples (with replacement). The number of ways to get ℓ bad apples is $\binom{k}{\ell} b^{\ell}(n-b)^{k-\ell}$. Hence, we have

$$
\mathbb{P}[B=\ell]=\frac{\binom{k}{\ell} b^{\ell}(n-b)^{k-\ell}}{n^{k}} .
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}[B] & =\sum_{\ell=0}^{k} \ell \mathbb{P}[B=\ell] \\
& =\sum_{\ell=0}^{k} \frac{\ell\binom{k}{\ell} b^{\ell}(n-b)^{k-\ell}}{n^{k}} \\
& =\sum_{\ell=0}^{k} \ell\binom{k}{\ell}\left(\frac{b}{n}\right)^{\ell}\left(\frac{n-b}{n}\right)^{k-\ell} .
\end{aligned}
$$

Here is how to sum this series: From the binomial theorem, we know that

$$
(x+y)^{k}=\sum_{\ell=0}^{k}\binom{k}{\ell} x^{\ell} y^{k-\ell} .
$$

Differentiating this with respect to x, we see that

$$
k(x+y)^{k-1}=\sum_{\ell=1}^{k} \ell\binom{k}{\ell} x^{\ell-1} y^{k-\ell}
$$

Hence,

$$
k x(x+y)^{k-1}=\sum_{\ell=0}^{k} \ell\binom{k}{\ell} x^{\ell} y^{k-\ell}
$$

Note that this is exactly the expression we got for $\mathbb{E}[B]$ with $x=\frac{b}{n}$ and $y=\frac{n-b}{n}$. Therefore, we finally get

$$
\begin{aligned}
\mathbb{E}[B] & =k \frac{b}{n}\left(\frac{b}{n}+\frac{n-b}{n}\right)^{k-1} \\
& =\frac{k b}{n} .
\end{aligned}
$$

Method 2: Use linearity of expectation.
Let X_{i} denote the random variable which is equal to 1 if the $i^{\text {th }}$ apple we choose is bad, and is equal to 0 if the $i^{\text {th }}$ apple we choose is good. Then, the number of bad apples we choose is equal to $X_{1}+\cdots+X_{k}$ i.e. $B=X_{1}+\cdots+X_{k}$ Hence, the expected number of bad apples is

$$
\mathbb{E}[B]=\mathbb{E}\left[X_{1}+\cdots+X_{k}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{k}\right] .
$$

Since we are choosing the apples with replacement, $\mathbb{E}\left[X_{i}\right]=b / n$ for all i. Therefore,

$$
\mathbb{E}[B]=\mathbb{E}\left[X_{1}+\cdots+X_{k}\right]=\frac{k b}{n}
$$

(ii) Method 1: Direct computation using the probability mass function.

Let B denote the random variable recording the number of bad apples we have chosen. Let's compute the pmf of B. There are $\binom{n}{k}$ ways to choose k apples (without replacement). The number of ways to get ℓ bad apples is $\binom{b}{\ell}\binom{n-b}{k-\ell}$. Hence, we have

$$
\mathbb{P}[B=\ell]=\frac{\binom{b}{\ell}\binom{n-b}{k-\ell}}{\binom{n}{k}} .
$$

Therefore,

$$
\mathbb{E}[B]=\sum_{\ell=0}^{k} \frac{\ell\binom{b}{\ell}\binom{n-b}{k-\ell}}{\binom{n}{k}} .
$$

One way to sum this series is the following: first, note that for $\ell \leq b, \ell\binom{b}{\ell}=b\binom{b-1}{\ell-1}$ since

$$
\ell\binom{b}{\ell}=\frac{\ell b!}{(b-\ell)!\ell!}=\frac{b(b-1)!}{(b-\ell)!(\ell-1)!}=b\binom{b-1}{\ell-1} .
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}[B] & =\sum_{\ell=0}^{k} \frac{b\binom{b-1}{\ell-1}\binom{n-b}{k-\ell}}{\binom{n}{k}} \\
& =b \sum_{\ell=0}^{k} \frac{\binom{b-1}{\ell-1}\binom{n-b}{k-\ell}}{\frac{n}{k}\binom{n-1}{k-1}} \\
& =\frac{b k}{n} \sum_{\ell=0}^{k} \frac{\binom{b-1}{\ell-1}\binom{(n-1)-(b-1)}{k-1)-(\ell-1)}}{\binom{n-1}{k-1}} \\
& =\frac{b k}{n} .
\end{aligned}
$$

The last equality holds because $\sum_{\ell=0}^{k}\binom{b-1}{\ell-1}\binom{n-1)-(b-1)}{k-1)-(\ell-1)}=\binom{n-1}{k-1}$ - both sides count the number of ways to choose $k-1$ apples (without replacement) from a pile of $n-1$ apples, of which $b-1$ are bad. Note that this is the same answer as above!

Method 2: Use linearity of expectation.
Again, linearity of expectation is much simpler. Let X_{i} denote the random variable which is equal to 1 if the $i^{\text {th }}$ apple we choose is bad, and is equal to 0 if the $i^{\text {th }}$ apple we choose is good. Then, the number of bad apples we choose is equal to $X_{1}+\cdots+X_{k}$ i.e. $B=X_{1}+\cdots+X_{k}$ Hence, the expected number of bad apples is

$$
\mathbb{E}[B]=\mathbb{E}\left[X_{1}+\cdots+X_{k}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{k}\right] .
$$

We will show that it is still the case that $\mathbb{E}\left[X_{i}\right]=b / n$ for all i. In order to see this, note that there are $\binom{n}{k} k$! sequences representing the k apples chosen (in order). We want to count the number of such sequences which contain a bad apple in position i. There are b ways to
choose such a bad apple. The remaining $k-1$ positions can have any of the remaining $n-1$ apples, hence there are $\binom{n-1}{k-1}(k-1)$! such sequences of length $k-1$. Put together, we see that

$$
\begin{aligned}
\mathbb{E}\left[X_{i}\right] & =\frac{b\binom{n-1}{k-1}(k-1)!}{\binom{n}{k} k!} \\
& =\frac{b(n-1)!/(n-k)!}{n!/\{(n-k)!\}} \\
& =\frac{b}{n}
\end{aligned}
$$

Therefore,

$$
\mathbb{E}[B]=\mathbb{E}\left[X_{1}+\cdots+X_{k}\right]=\frac{k b}{n}
$$

Method 3: Another way of using linearity of expectation.
For $1 \leq i \leq b$, let Y_{i} be the random variable which is equal to 1 if the $i^{t h}$ bad apple is chosen and 0 otherwise. Then, the number of bad apples chosen is precisely $B=Y_{1}+\cdots+Y_{b}$. Therefore, by the linearity of expectation

$$
\mathbb{E}[B]=\mathbb{E}\left[Y_{1}+\cdots+Y_{b}\right]=\mathbb{E}\left[Y_{1}\right]+\cdots+\mathbb{E}\left[Y_{b}\right]
$$

Finally, note that for all $1 \leq i \leq b, \mathbb{E}\left[Y_{i}\right]=\mathbb{P}\left[Y_{i}=1\right]=\frac{\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{k}{n}$, since there are $\binom{n}{k}$ total ways of choosing k apples, and there are $\binom{n-1}{k-1}$ ways of choosing k apples such that the $i^{\text {th }}$ bad apple is also chosen. Therefore, as before

$$
\mathbb{E}[B]=\mathbb{E}\left[Y_{1}+\cdots+Y_{b}\right]=\frac{b k}{n}
$$

Solution Optional Problem. Let T denote the number of tosses until the first tail appears. Let W denote your winnings (in dollars). Then, $W=2^{T}$.
(i) We can easily compute the pmf of T; indeed, for any integer $i \geq 1$, we have

$$
\mathbb{P}[T=i]=2^{-i} .
$$

Therefore,

$$
\mathbb{E}[W]=\sum_{i=1}^{\infty} 2^{i} 2^{-i}=\sum_{i=1}^{\infty} 1=\infty
$$

(ii) Recall that $F_{W}(x)=\mathbb{P}[W \leq x]$. In our case, note that $F_{W}(x)=0$ for all $x<2$. For $x \geq 2$, let k denote the largest integer such that $2^{k} \leq x$. Then, we have

$$
F_{W}(x)=\mathbb{P}[W \leq x]=\mathbb{P}[T \leq k]=\sum_{j=1}^{k} \mathbb{P}[T=j]=\sum_{j=1}^{k} 2^{-j}=\left(1-2^{-k}\right)
$$

