18.600 Recitation 4
Recitation Instructor: Vishesh Jain
math.mit.edu/~visheshj
Thursday, Oct. 4th, 2018

Solution Problem 1. Each bag can be thought of as a sequence of length 10 made up of the characters $\{W, M, D, C\}$. Since each such sequence is equally likely, both parts reduce to counting problems. Note that there are $4^{10}=2^{20}$ such sequences.
(a) In this part, we need to count sequences with exactly 3 Ms . There are $\binom{10}{3}$ ways of choosing three positions for the Ms , and 3^{7} choices for the characters in the remaining 7 positions. Hence, there are $\binom{10}{3} \times 3^{7}$ such sequences, and the desired probability is

$$
\frac{\binom{10}{3} \times 3^{7}}{2^{20}} \approx 0.2502 .
$$

(b) We need to count the number of sequences which have either 0 or 1 Cs , or either 9 or 10 Cs . The number of sequences with 0 Cs is 3^{10} and the number of sequences with 10 Cs is 1 . To count the number of sequence with 1 C , note that we can choose the position of the C in 10 ways, and then we have 3^{9} ways of choosing the character in the remaining 9 positions; hence, there are 10×3^{9} such sequences. Similarly, the number of sequences with 9 Cs is 10×3. Putting everything together, we see that the number of such sequences is

$$
3^{10}+1+10 \times 3^{9}+30=255910
$$

and the probability that a bag is defective equals

$$
\frac{255910}{2^{20}} \approx 0.244
$$

Solution Problem 2. Note that X is a geometric random variable with parameter $p=1 / 3$. Hence, $\mathrm{E}[X]=3$. To compute $\mathrm{P}[X>5]$, we can use two methods. The first method is to notice that the event $X>5$ is precisely the event that Alice wins each of the first 5 games this happens with probability $(2 / 3)^{5}$. The second method is

$$
\begin{aligned}
\mathrm{P}[X>5] & =\sum_{k=6}^{\infty} \mathrm{P}[X=k] \\
& =\sum_{k=6}^{\infty}\left(\frac{2}{3}\right)^{k-1}\left(\frac{1}{3}\right) \\
& =\left(\frac{1}{3}\right) \sum_{\ell=5}^{\infty}\left(\frac{2}{3}\right)^{\ell} \\
& =\left(\frac{2}{3}\right)^{5} .
\end{aligned}
$$

Solution Problem 3. Note that X is a geometric random variable with parameter $1 / 6$ and Y is distributed as $\operatorname{Bin}(4,1 / 3)$.
(a) By linearity of expectation, we know that $\mathrm{E}[Z]=\mathrm{E}[X]+\mathrm{E}[Y]$. Moreover, $\mathrm{E}[X]=6$ and $\mathrm{E}[Y]=4 / 3$. Therefore, $\mathrm{E}[Z]=22 / 3$.
(b) $Z=2$ can happen only via the following disjoint cases: $X=2$ and $Y=0$ or $X=1$ and $Y=1$. By the independence of X and Y, the probability that $X=2$ and $Y=0$ is

$$
\left(\frac{5}{6} \times \frac{1}{6}\right) \times\left(\frac{2}{3}\right)^{4}=\frac{20}{3^{6}}
$$

Similarly, the probability that $X=1$ and $Y=1$ is

$$
\left(\frac{1}{6}\right) \times\left(4 \times\left(\frac{2}{3}\right)^{3} \times \frac{1}{3}\right)=\frac{48}{3^{6}}
$$

Hence, we get that

$$
\mathrm{P}[Z=2]=\frac{68}{3^{6}} .
$$

(c) Note that $F_{Z}(2)=\mathrm{P}[Z \leq 2]=\mathrm{P}[Z=1]+\mathrm{P}[Z=2]$, since we know that Z is an integer, and Z cannot be less than 1 (as $X \geq 1$ by definition). We have already computed $\mathrm{P}[Z=2]$, so it only remains to compute $\mathrm{P}[Z=1]$. This can happen only if $X=1$ and $Y=0$, which happens with probability

$$
\left(\frac{1}{6}\right) \times\left(\frac{2}{3}\right)^{4}=\frac{24}{3^{6}}
$$

Hence, we see that

$$
F_{Z}(2)=\frac{92}{3^{6}} .
$$

Solution Problem 4. (a) The probability that both teams get a question correct is $3 / 4 \times 2 / 3=$ $1 / 2$. Therefore, X is distributed as $\operatorname{Bin}(10,1 / 2)$, and hence, $E[X]=5$.
(b) By inclusion-exclusion (in this case, $\mathrm{P}[A \cup B]=\mathrm{P}[A]+\mathrm{P}[B]-\mathrm{P}[A \cap B]$), the probability that at least one team gets a question correct is $3 / 4+2 / 3-1 / 2=11 / 12$. Therefore, Y is distributed as $\operatorname{Bin}(10,11 / 12)$, and hence, $\operatorname{Var}[Y]=10 \times \frac{11}{12} \times\left(1-\frac{11}{12}\right)=110 / 144$.
(c) We know that $\mathrm{E}\left[Y^{2}\right]=\operatorname{Var}[Y]+(\mathrm{E}[Y])^{2}$. From the previous part, we know that $\operatorname{Var}[Y]=$ $110 / 144$. Moreover, since Y is distributed as $\operatorname{Bin}(10,11 / 12)$, we know that $\mathrm{E}[Y]=110 / 12$. Hence, we get that $\mathrm{E}\left[Y^{2}\right]=110 / 144+(110 / 12)^{2}=\left(110^{2}+110\right) / 144=(110 \times 111) / 144$.

