18.600 Recitation 7
 Recitation Instructor: Vishesh Jain
 Partial solutions available at math.mit.edu/ \sim visheshj
 Thursday, Oct. 25th, 2018

Solution Problem 1. (a) The joint density function is $f(11: 00+a, 11: 00+b)=1 / 1800$ for $15<a<45,0<b<60$, and 0 for other values of a, b. Notice that the person who arrives first waits for less than 5 minutes if and only if Bob arrives within 5 minutes of Alice. The probability of this is given by

$$
\int_{15}^{45} \int_{a-5}^{a+5}(1 / 1800) d b d a=1 / 6
$$

(b) If Bob arrives between 11:00 and 11:15 (which happens with probability $1 / 4$), then he is always first, and if he arrives between 11:15 and 11:45 (which happens with probability $1 / 2$), then by symmetry, he arrives first with probability $1 / 2$. Therefore, the total probability that Bob arrives first is $\frac{1}{4}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}$.

Solution Problem 2. (a) Let A denote the number of days it takes for Alice to get her car serviced, and let B denote the number of days it takes for Bob to get his car serviced. Then,

$$
\operatorname{Pr}[B>A]=\int_{0}^{\infty} \int_{a}^{\infty} \frac{1}{10} \exp (-b / 2) \exp (-a / 5) d b d a=\int_{0}^{\infty} \frac{1}{5} \exp (-7 a / 10)=2 / 7
$$

(b) Since the exponential distribution is memoryless, conditioned on $B>10$, B is still exponentially distributed. Therefore, the expected number of further days Bob has to wait until his car is serviced is 2 .
(c) Note that $T=A+B$. Therefore, for any $t>0$, we have

$$
f_{T}(t)=\int_{0}^{t} \frac{1}{10} \exp (-x / 2) \exp (-(t-x) / 5) d x=\frac{1}{3}\left(e^{-t / 5}-e^{-t / 2}\right) .
$$

Solution Problem 3. (a) Since

$$
\int_{0}^{1} \int_{0}^{2}\left(x^{2}+(x y) / 2\right) d y d x=7 / 6
$$

it follows that a must be $6 / 7$.
(b) $f_{X}(x)=0$ for $x \notin(0,1)$. For $x \in(0,1)$, we have

$$
f_{X}(x)=\int_{0}^{2} a\left(x^{2}+(x y) / 2\right) d y=a\left(2 x^{2}+x\right) .
$$

(c) We have

$$
E[X]=\int_{0}^{1} x \cdot a\left(2 x^{2}+x\right) d x=5 / 7
$$

(d) No, because no function of y multiplied by $f_{X}(x)$ can give the joint density given in the problem.
(e) $\int_{0}^{1 / 2} \int_{1 / 2}^{2} a\left(x^{2}+(x y) / 2\right) d y d x=69 / 448$.
(f) We need to divide the answer above by

$$
P[X<1 / 2]=\int_{0}^{1 / 2} a\left(2 x^{2}+x\right) d x=5 / 28
$$

This shows that the desired conditional probability is $69 / 80$.
Solution Problem 4. Note that $f_{X+Y}(a)=0$ if $a \leq 0$. For $a>0$, we have

$$
\begin{aligned}
f_{X+Y}(a) & =\int_{0}^{2} f_{X, Y}(x, a-x) d x \\
& =\frac{1}{2} \int_{0}^{2} \mathbf{1}_{0 \leq a-x \leq 2-x} d x \\
& =\frac{1}{2} \int_{0}^{2} \mathbf{1}_{a \leq 2} \cdot \mathbf{1}_{x \leq a} d x \\
& =\frac{1}{2} \int_{0}^{a} \mathbf{1}_{a \leq 2} d x \\
& =\left\{\begin{aligned}
\frac{a}{2} & 0 \leq a \leq 2 \\
0 & \text { else. }
\end{aligned}\right.
\end{aligned}
$$

