18.600 Recitation 8
Recitation Instructor: Vishesh Jain Partial solutions available at math.mit.edu/~visheshj Thursday, Nov. 1st, 2018

Solution Problem 1. (a) The area of the triangle is $1 / 2$. Hence, the joint PDF is 2 inside the triangle, and 0 outside the triangle.
(b) The marginal PDF is 0 unless $y \in(0,1)$. For $y \in(0,1)$, we have $f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=$ $\int_{0}^{1-y} 2 d x=2(1-y)$.
(c) $f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)$. Therefore, we see from the first two parts that $f_{X \mid Y}(x \mid y)=$ $1 /(1-y)$ for (x, y) inside the triangle. This is also clear geometrically.
(d) $E[X \mid Y=y]=\int_{0}^{1-y} \frac{x}{(1-y)} d x=\frac{1-y}{2}$. Therefore, $E[X]=\int_{0}^{1} E[X \mid Y=y] f_{Y}(y) d y=$ $\frac{1}{2}-\frac{E[Y]}{2}$.
(e) By symmetry, $E[X]=E[Y]$. So, the previous part gives $3 E[X]=1$ i.e. $E[X]=\frac{1}{3}$.

Solution Problem 2. (a) For $1 \leq i \leq 13$, let X_{i} denote the indicator for the $i^{\text {th }}$ card being an ace, and let Y_{i} denote the indicator for the $i^{t h}$ card being a spade. Then, $X=X_{1}+\cdots+X_{13}$ and $Y=Y_{1}+\cdots+Y_{13}$. Since $\operatorname{Cov}(X, Y)=\sum_{i, j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$, it is sufficient to show that $\operatorname{Cov}\left(X_{i}, Y_{j}\right)=0$ for all pairs (i, j), and this is easily checked directly using the definition of covariance.
(b) X and Y are not independent, since $0=\operatorname{Pr}[X=2, Y=13] \neq \operatorname{Pr}[X=2] \operatorname{Pr}[Y=13]$.

Solution Problem 3. We use the trick that $N \mid N>k \sim N+k$. Specifically, we will use it for $k=2$. Let $X=\cos (N \pi)$. Then, we have

$$
\begin{aligned}
E[X] & =E[X \mid N=1] \operatorname{Pr}[N=1]+E[X \mid N=2] \operatorname{Pr}[N=2]+E[X \mid N>2] \operatorname{Pr}[N>2] \\
& =\cos (\pi) p+\cos (2 \pi)(1-p) p+(1-p)^{2} E[X \mid N>2] \\
& =\cos (\pi) p+\cos (2 \pi)(1-p) p+(1-p)^{2} E[\cos ((N+2) \pi)] \\
& =\cos (\pi) p+\cos (2 \pi)(1-p) p+(1-p)^{2} E[\cos (N \pi)] \\
& =\cos (\pi) p+\cos (2 \pi)(1-p) p+(1-p)^{2} E[X] .
\end{aligned}
$$

Solving for $E[X]$ gives $E[X]=p /(p-2)$.
Solution Problem 4. The sample space here is sequences of dice rolls. Let's compute the probability of the event that all throws until the first 6 are even. Using the law of total probability, this is

$$
\sum_{k=1}^{\infty}\left(\frac{2}{5}\right)^{k-1}\left(\frac{5}{6}\right)^{k-1}\left(\frac{1}{6}\right)=\frac{1}{4}
$$

This calculation also shows that the the probability of the sequences where the first 6 appears in the $k^{t h}$ position, and all preceding entries are even is $\left(\frac{2}{6}\right)^{k-1} \frac{1}{6}$. Therefore, the expected number of trials until the first 6 , conditioned on this event, is

$$
\sum_{k=1}^{\infty} k\left(\frac{1}{3}\right)^{k-1} \frac{(1 / 6)}{(1 / 4)}=\sum_{k=1}^{\infty} k\left(\frac{1}{3}\right)^{k-1}\left(\frac{2}{3}\right)=\frac{3}{2}
$$

The probability that the first die is 6 , conditioned on the event, is $(1 / 6) /(1 / 4)=2 / 3$. This is consistent with the previous answer, since it shows that the conditional distribution amounts to rolling a 3 sided die (with faces $2,4,6$), where the probability of rolling a 6 is $2 / 3$, and the goal is to find the expected number of rolls until the first 6 .

