
Let X1, . . . , Xn be non-negative independent random variables, each of which has mean
1. Let X = X1 + · · · + Xn. We will show (following Nazarov https://mathoverflow.
net/questions/187938/lower-bound-for-prx-geq-ex/188087#188087) that there exists
an absolute constant c > 0 such that

Pr (X ≤ n+ 1) ≥ c.

We will find it more convenient to work instead with Yi = 1−Xi. Note that Yi ≤ 1 and
E[Yi] = 0 for all i. The above statement is equivalent to showing that

P := Pr (Y ≥ −1) ≥ c.

Proof: The proof will proceed by case analysis, depending on the value of E eY .
Case I: E eY ≤ 2. In this case, we have

1 ≤ eE[Y ]/2 ≤ E eY/2 = E[eY/21(Y < −1)] + E[eY/21(Y ≥ −1)] ≤ e−1/2(1− P ) +
√

2P ;

the second inequality is Jensen’s inequality, and the rightmost inequality is by Cauchy-
Schwarz. Hence, in this case, we get that

1 ≤ e−1/2(1− P ) +
√

2P

which translates to P ≥≈ 0.104.

Case II: E eY > 2. In this case, there exists some t ∈ (0, 1) such that E etY = 2. We
claim that there exists some absolute constant K > 1 for which E e2tY ≤ 2K . Before proving
this claim, let’s see how this finishes the proof.

Setting q := 2−K−1, we have

E
[
etY − qe2tY − 1

]
≥ 2− 2−1 − 1 ≥ 1

2
.

Moreover, the function x − qx2 − 1 is bounded above by 1/4q = 2K−1, and is negative
whenever x < 0. Therefore, we have

1

2
≤ E

[
etY − qe2tY − 1

]
≤ 2K−1 Pr(Y ≥ 0) ≤ 2K−1P.

It remains to prove the claim. It suffices to show that there exists some absolute constant
K > 1 such that if Z ≤ 1 is a mean zero random variable, then

E e2Z ≤ (E eZ)K .

From this, the claim follows since

E e2tY =
n∏

i=1

E e2tYi

≤

(
n∏

i=1

E etYi

)K

=
(
E etY

)K
= 2K .
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Finally, the inequality for Z follows by noting that there is some absolute constant K > 1
for which the following numerical inequality is true: e2z − 1 − 2z ≤ K (ez − 1− z) for all
z ≤ 1, and the following chain of inequalities:(

E eZ
)K

=
(
1 + E[eZ − 1− Z]

)K
≥ 1 +K E[eZ − 1− Z]

≥ 1 + E[e2Z − 1− 2Z]

= E[e2Z ].

Application: A fractional matching in a k-graph H = (V,E) is a function w : E →
[0, 1] such that for every v ∈ V ,

∑
e3v w(e) ≤ 1 (observe that if w : E → {0, 1}, then

the same condition gives a matching). The size of a fractional matching is defined to be∑
e∈E w(e). We say that w is a perfect fractional matching if its size is |V |/k (or equivalently,

if
∑

e3v w(e) = 1 for all v ∈ V ).
For an integer 0 ≤ d ≤ k − 1 and a real number 0 ≤ s ≤ n/k, we let f s

d(k, n) denote
the smallest integer m such that every n-vertex k-graph H with δd(H) ≥ m has a fractional
matching of size s. We denote fn/k

d (k, n) simply by fd(k, n). Also, let

fd(k) := lim sup
n→∞

fd(k, n)(
n−d
k−d

) .

It was proved by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov that for all k ≥ 3 and
1 ≤ d ≤ k − 1,

fd(k) ≤ fd(k − d),

where

fd(`) := lim sup
m→∞

f
m+d/`+d
0 (`,m)(

m
`

) .

Recently, together with Asaf Ferber, we observed that

fd(`) = Θd(`).

Here
Θd(`) := sup Pr[X1 + · · ·+X` ≥ `+ d],

where the supremum is taken over all collections of non-negative i.i.d. random variables
X1, . . . , X` with mean 1.
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