Let X_1, \ldots, X_n be non-negative independent random variables, each of which has mean 1. Let $X = X_1 + \cdots + X_n$. We will show (following Nazarov https://mathoverflow. net/questions/187938/lower-bound-for-prx-geq-ex/188087#188087) that there exists an absolute constant c > 0 such that

$$\Pr\left(X \le n+1\right) \ge c.$$

We will find it more convenient to work instead with $Y_i = 1 - X_i$. Note that $Y_i \leq 1$ and $\mathbb{E}[Y_i] = 0$ for all *i*. The above statement is equivalent to showing that

$$P := \Pr\left(Y \ge -1\right) \ge c.$$

Proof: The proof will proceed by case analysis, depending on the value of $\mathbb{E} e^{Y}$. **Case I:** $\mathbb{E} e^{Y} \leq 2$. In this case, we have

$$1 \le e^{\mathbb{E}[Y]/2} \le \mathbb{E} e^{Y/2} = \mathbb{E}[e^{Y/2}\mathbf{1}(Y < -1)] + \mathbb{E}[e^{Y/2}\mathbf{1}(Y \ge -1)] \le e^{-1/2}(1-P) + \sqrt{2P};$$

the second inequality is Jensen's inequality, and the rightmost inequality is by Cauchy-Schwarz. Hence, in this case, we get that

$$1 \le e^{-1/2}(1-P) + \sqrt{2P}$$

which translates to $P \geq \approx 0.104$.

Case II: $\mathbb{E} e^Y > 2$. In this case, there exists some $t \in (0, 1)$ such that $\mathbb{E} e^{tY} = 2$. We claim that there exists some absolute constant K > 1 for which $\mathbb{E} e^{2tY} \leq 2^K$. Before proving this claim, let's see how this finishes the proof.

Setting $q := 2^{-K-1}$, we have

$$\mathbb{E}\left[e^{tY} - qe^{2tY} - 1\right] \ge 2 - 2^{-1} - 1 \ge \frac{1}{2}.$$

Moreover, the function $x - qx^2 - 1$ is bounded above by $1/4q = 2^{K-1}$, and is negative whenever x < 0. Therefore, we have

$$\frac{1}{2} \le \mathbb{E}\left[e^{tY} - qe^{2tY} - 1\right] \le 2^{K-1} \Pr(Y \ge 0) \le 2^{K-1} P.$$

It remains to prove the claim. It suffices to show that there exists some absolute constant K > 1 such that if $Z \leq 1$ is a mean zero random variable, then

$$\mathbb{E} e^{2Z} \le (\mathbb{E} e^Z)^K.$$

From this, the claim follows since

$$\mathbb{E} e^{2tY} = \prod_{i=1}^{n} \mathbb{E} e^{2tY_i}$$
$$\leq \left(\prod_{i=1}^{n} \mathbb{E} e^{tY_i}\right)^K$$
$$= \left(\mathbb{E} e^{tY}\right)^K = 2^K.$$

Finally, the inequality for Z follows by noting that there is some absolute constant K > 1 for which the following numerical inequality is true: $e^{2z} - 1 - 2z \leq K(e^z - 1 - z)$ for all $z \leq 1$, and the following chain of inequalities:

$$\left(\mathbb{E} e^{Z}\right)^{K} = \left(1 + \mathbb{E}[e^{Z} - 1 - Z]\right)^{K}$$

$$\geq 1 + K \mathbb{E}[e^{Z} - 1 - Z]$$

$$\geq 1 + \mathbb{E}[e^{2Z} - 1 - 2Z]$$

$$= \mathbb{E}[e^{2Z}].$$

Application: A fractional matching in a k-graph H = (V, E) is a function $w : E \to [0, 1]$ such that for every $v \in V$, $\sum_{e \ni v} w(e) \leq 1$ (observe that if $w : E \to \{0, 1\}$, then the same condition gives a matching). The size of a fractional matching is defined to be $\sum_{e \in E} w(e)$. We say that w is a perfect fractional matching if its size is |V|/k (or equivalently, if $\sum_{e \ni v} w(e) = 1$ for all $v \in V$).

For an integer $0 \le d \le k-1$ and a real number $0 \le s \le n/k$, we let $f_d^s(k,n)$ denote the smallest integer m such that every n-vertex k-graph H with $\delta_d(H) \ge m$ has a fractional matching of size s. We denote $f_d^{n/k}(k,n)$ simply by $f_d(k,n)$. Also, let

$$f_d(k) := \limsup_{n \to \infty} \frac{f_d(k, n)}{\binom{n-d}{k-d}}.$$

It was proved by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov that for all $k \geq 3$ and $1 \leq d \leq k - 1$,

$$f_d(k) \le f^d(k-d),$$

where

$$f^d(\ell) := \limsup_{m \to \infty} \frac{f_0^{m+d/\ell+d}(\ell,m)}{\binom{m}{\ell}}.$$

Recently, together with Asaf Ferber, we observed that

$$f^d(\ell) = \Theta^d(\ell)$$

Here

$$\Theta^d(\ell) := \sup \Pr[X_1 + \dots + X_\ell \ge \ell + d]$$

where the supremum is taken over all collections of non-negative i.i.d. random variables X_1, \ldots, X_ℓ with mean 1.