Let X_{1}, \ldots, X_{n} be non-negative independent random variables, each of which has mean 1. Let $X=X_{1}+\cdots+X_{n}$. We will show (following Nazarov https://mathoverflow. net/questions/187938/lower-bound-for-prx-geq-ex/188087\#188087) that there exists an absolute constant $c>0$ such that

$$
\operatorname{Pr}(X \leq n+1) \geq c .
$$

We will find it more convenient to work instead with $Y_{i}=1-X_{i}$. Note that $Y_{i} \leq 1$ and $\mathbb{E}\left[Y_{i}\right]=0$ for all i. The above statement is equivalent to showing that

$$
P:=\operatorname{Pr}(Y \geq-1) \geq c .
$$

Proof: The proof will proceed by case analysis, depending on the value of $\mathbb{E} e^{Y}$.
Case I: $\mathbb{E} e^{Y} \leq 2$. In this case, we have

$$
1 \leq e^{\mathbb{E}[Y] / 2} \leq \mathbb{E} e^{Y / 2}=\mathbb{E}\left[e^{Y / 2} \mathbf{1}(Y<-1)\right]+\mathbb{E}\left[e^{Y / 2} \mathbf{1}(Y \geq-1)\right] \leq e^{-1 / 2}(1-P)+\sqrt{2 P}
$$

the second inequality is Jensen's inequality, and the rightmost inequality is by CauchySchwarz. Hence, in this case, we get that

$$
1 \leq e^{-1 / 2}(1-P)+\sqrt{2 P}
$$

which translates to $P \geq \approx 0.104$.
Case II: $\mathbb{E} e^{Y}>2$. In this case, there exists some $t \in(0,1)$ such that $\mathbb{E} e^{t Y}=2$. We claim that there exists some absolute constant $K>1$ for which $\mathbb{E} e^{2 t Y} \leq 2^{K}$. Before proving this claim, let's see how this finishes the proof.

Setting $q:=2^{-K-1}$, we have

$$
\mathbb{E}\left[e^{t Y}-q e^{2 t Y}-1\right] \geq 2-2^{-1}-1 \geq \frac{1}{2}
$$

Moreover, the function $x-q x^{2}-1$ is bounded above by $1 / 4 q=2^{K-1}$, and is negative whenever $x<0$. Therefore, we have

$$
\frac{1}{2} \leq \mathbb{E}\left[e^{t Y}-q e^{2 t Y}-1\right] \leq 2^{K-1} \operatorname{Pr}(Y \geq 0) \leq 2^{K-1} P
$$

It remains to prove the claim. It suffices to show that there exists some absolute constant $K>1$ such that if $Z \leq 1$ is a mean zero random variable, then

$$
\mathbb{E} e^{2 Z} \leq\left(\mathbb{E} e^{Z}\right)^{K}
$$

From this, the claim follows since

$$
\begin{aligned}
\mathbb{E} e^{2 t Y} & =\prod_{i=1}^{n} \mathbb{E} e^{2 t Y_{i}} \\
& \leq\left(\prod_{i=1}^{n} \mathbb{E} e^{t Y_{i}}\right)^{K} \\
& =\left(\mathbb{E} e^{t Y}\right)^{K}=2^{K} .
\end{aligned}
$$

Finally, the inequality for Z follows by noting that there is some absolute constant $K>1$ for which the following numerical inequality is true: $e^{2 z}-1-2 z \leq K\left(e^{z}-1-z\right)$ for all $z \leq 1$, and the following chain of inequalities:

$$
\begin{aligned}
\left(\mathbb{E} e^{Z}\right)^{K} & =\left(1+\mathbb{E}\left[e^{Z}-1-Z\right]\right)^{K} \\
& \geq 1+K \mathbb{E}\left[e^{Z}-1-Z\right] \\
& \geq 1+\mathbb{E}\left[e^{2 Z}-1-2 Z\right] \\
& =\mathbb{E}\left[e^{2 Z}\right] .
\end{aligned}
$$

Application: A fractional matching in a k-graph $H=(V, E)$ is a function $w: E \rightarrow$ $[0,1]$ such that for every $v \in V, \sum_{e \ni v} w(e) \leq 1$ (observe that if $w: E \rightarrow\{0,1\}$, then the same condition gives a matching). The size of a fractional matching is defined to be $\sum_{e \in E} w(e)$. We say that w is a perfect fractional matching if its size is $|V| / k$ (or equivalently, if $\sum_{e \ni v} w(e)=1$ for all $\left.v \in V\right)$.

For an integer $0 \leq d \leq k-1$ and a real number $0 \leq s \leq n / k$, we let $f_{d}^{s}(k, n)$ denote the smallest integer m such that every n-vertex k-graph H with $\delta_{d}(H) \geq m$ has a fractional matching of size s. We denote $f_{d}^{n / k}(k, n)$ simply by $f_{d}(k, n)$. Also, let

$$
f_{d}(k):=\limsup _{n \rightarrow \infty} \frac{f_{d}(k, n)}{\binom{n-d}{k-d}} .
$$

It was proved by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov that for all $k \geq 3$ and $1 \leq d \leq k-1$,

$$
f_{d}(k) \leq f^{d}(k-d)
$$

where

$$
f^{d}(\ell):=\limsup _{m \rightarrow \infty} \frac{f_{0}^{m+d / \ell+d}(\ell, m)}{\binom{m}{\ell}} .
$$

Recently, together with Asaf Ferber, we observed that

$$
f^{d}(\ell)=\Theta^{d}(\ell)
$$

Here

$$
\Theta^{d}(\ell):=\sup \operatorname{Pr}\left[X_{1}+\cdots+X_{\ell} \geq \ell+d\right]
$$

where the supremum is taken over all collections of non-negative i.i.d. random variables X_{1}, \ldots, X_{ℓ} with mean 1.

