
Let’s start by quickly recalling the steps of the proof. There are five
stages:

(1) Template: We obtain a triangle decomposition of a constant
fraction of G by taking a random injection into a “nice” Steiner triple
system on a larger number of vertices (this number is somewhere be-
tween 2|V (G)| and 4|V (G)|). We can show w.h.p. that (G,G∗) has
some nice joint typicality property and G\G∗ also has some nice typi-
cality. This step is very straightforward, and in the interest of time, I
will skip it. Check out Lemma 2.5 of Keevash’s paper for details.

(2) Nibble: We start with G\G∗ having the nice typicality proba-
bility (which is guaranteed by the previous step). Then, as we saw in
Asaf’s talk, we can use the Rodl nibble to obtain an “almost triangle
decomposition” of G\G∗ such that the “leave” is c1-bounded. Recall
that this boundedness condition not only quantifies the fact that we’ve
been able to nibble away at most of the edges in G\G∗, but also that
this “sparsity” is spread throughout the vertices.

(3) Cover: Starting with a c1-bounded leave L guaranteed by the
above step, we find a set of edge disjoint triangles whose edges cover
all edges in L, and possibly also spill over to G∗. This step is based on
a “randomized greedy algorithm”, and we will see how c1-boundedness
comes in here. Also, we will be able to arrange that the spill S is
c2-bounded, which will be important for the next steps.

(4) Hole: For a c2-bounded spill S as above, we will find triangle
decompositions MO and M I such that ∪M I , S is a partition of ∪MO

and moreover, that ∪MO is c3-bounded. This step will probably take
up most of the time today.

(5) Completion: Finally, given the data above, we will “modify”
MO,M I and MC to obtain triangle decompositions M1,M2 such that
∪M2 = ∪MO and ∪M1 = ∪MO ∪ L, and also triangle decomposi-
tions M3,M4 such that M2 ⊂ M4, ∪M3 = ∪M4, M3 ⊂ T . Then,
N∪M1∪(M4\M1)∪(T\M3) gives the requisite triangle decomposition.

Due to lack of time, as well as for expositional clarity, I had to make
some editorial decisions.

The first one is that I will not be focusing on the constants. In
general, this is how you should think about them: ci+1 ≤M×d(G)−K×
ci, where M and K are universal constants. Ultimately, we will go up
to c5 or so, and there will be some constraint on c5 vs. d(G), which we
will meet by taking c0 to be something like d(G)−100,000 or so.

The second editorial decision is that I will skip details of concen-
tration. Roughly speaking, most of the steps are randomized, and
the analysis can be broken down into expectation and concentration.

1

2

Pretty much all of the interesting new ideas are already contained in
the analysis of the expectation – the concentration is mostly a standard
application of Azuma/Chernoff in some cases, and there are a couple
of places where he uses an application of Freedman’s inequality (see
Lemma 2.9 of the paper).

Now, let’s do the cover step. We will introduce “random greedy
constructions” and their analysis here, so pay attention!

The algorithm for producing M c given L which is c1-bounded is
simple. Arbitrarily enumerate the edges of L as e1, e2, . . . , e|L|. Then,
at the ith strage, consider ei and choose a random triangle containing ei
subject to the following constraints: both of its other edges are in M∗,
and none of these two new edges was chosen in a previous step. Let S
denote the union of all the new edges (this is the spillover). We want to
claim that w.h.p., this process does not terminate before completion,
and that the S is produces is c2-bounded.

So why does this work? Let St−1 denote the new edges accumulated
until stage t − 1 (so that S0 is the empty set). Assume inductively
that St−1 is c2-bounded. Denote the edge et as (u, v). Then, by the
typicality of G∗, we know that |NG∗(u) ∩NG∗(v)| ≈ d(G∗)2n (think of
this as large). On the other hand, since St−1 is c2-bounded, the number
of choices of vertices to complete the triangle which are excluded is at
most 2× c2×n. So, if c2 is much smaller than d(G∗)2 (and indeed, this
is the case), then we see that at least half of the choices that we would
have had (if we had just chosen a random triangle, and not worried
about not getting overlaps) are still there. In particular, if e′ is some
edge in G∗, then Pr′t(e

′), by which we mean the probability that e′ is
chosen in the tth step of the process, conditioned on not having overlaps,
is at most 2 × Prt(e′), where Prt(e

′) is the probability of choosing e′

in the tth step when we don’t worry about overlaps. The point is that
we’ve only lost a constant factor, and the second probability is much
easier to analyse.

Now, we use this control to show that we still expect St to be
c2−bounded. Indeed, fix any vertex v and consider |St(v)| =

∑
i≤tXi,

where Xi =
∑

v∈e′∈G∗ 1e′⊂Ti
. Taking expectations, we get E[|St(v)|] =∑

i≤t Pr[Xi] =
∑

i≤t
∑

v∈e′∈G∗ Pr
′
i[e
′] ≤ 2

∑
i≤t

∑
v∈e′∈G∗ Pri[e

′]. This
last sum we can bound – note that this is where the c1-boundedness of
L comes in!

Indeed, we write
∑

i≤t
∑

v∈e′∈G∗ Pri[e
′] =

∑
v∈e′∈G∗

∑
i≤t Pri[e

′] =∑
u′ : (v,u′)∈G∗

∑
i≤t Pri[(v, u

′)].

3

For any fixed e′ = (u′, v), Pri[e
′] can be nonzero only in a step

where ei and e′ share a vertex. In particular, it can be nonzero only
in steps i such that ei is either an edge in L incident to u′ or to
v′. However, since L is bounded, there are at most 2c1n such val-
ues of i. Moreover, whenever this probability is not zero, it is equal to
1/|NG∗(ui)∩NG∗(vi)| ≈ 1

d(G)2n
. Combining everything, we get that the

inner sum is bounded by 2c1n× 1
d(G)2n

= 2c1/d(G)2. On the other hand,

the outer sum is over at most n terms. Putting everything together,
we get that the whole sum is bounded by 2c1n/d(G)2 < c2n

100
, provided

we define c2 suitably. Now, we use concentration.
Let me emphasize what happened here. The c2-boundedness was

useful only to say that we had enough choices left, and to bound prob-
abilities by some fixed constant times a probability we can control. On
the other hand, the control on the latter probability is solely in terms
of c1 and d(G) (in particular, it is independent of c2 at the start of the
step). So, it’s not like one of those procedures where we have to worry
about starting with some c2 and getting a worse c′2.

Before moving to Hole, we make the preliminary observation that
the S we obtained from the previous step is tridivisible, in the sense
that |S| is a multiple of 3 and each vertex has even degree. Indeed, we
can write S = (∪M c)\L, where L = G\{G∗ t (∪N)}.

Until now, we have covered every edge at least once, where the edges
which are covered twice are precisely those in S. If we could obtain
triangle decompositions MO and M I as in hole, then by adding all the
triangles in M I and removing all the triangles in MO, each edge will be
covered “once”. Of course, this doesn’t work as is, since there will be
some overlapping edges between triangles of MO,M I and those coming
from the template T . The Completion step will fix this part.

Roughly speaking, Hole lets us replace a bunch of edges with the “dif-
ference” of two triangle decompositions which is progress since these
triangles live in the very nice part G∗ of our graph. Then, we can use
some sort of local “shuffling” to replace “bad” triangles one by one,
and perform the completion step. More on this after the break.

The goal for the remaining time today is to do all of Hole except
maybe for one analysis (which is conceptually not so different from the
randomized greedy analysis we already saw for cover). Next time, we
will do Completion, and this will finish the proof.

4

Now, Hole is carried out in two stages, each of which has multiple
steps.

In the first stage, we construct an “integral” triangle decomposition
(of Kn; in particular, we use edges that are not in G) such that the
sum of edge multiplicities is one for edges in S and 0 elsewhere. Note
that this needs the tridivisibility of S, which we know to hold. Actu-
ally, getting such integral triangle decompositions of tridivisible graphs
was already known, except that Keevash needs to do it from scratch
since he wants some boundedness property to hold (and here, he uses
the c2-boundedness of S). Once we have such an integral triangle de-
composition, we will then modify it in the second stage to an integral
decomposition valued in {±1, 0} and such that the {±1} values only
occur on triangles which are actually in G∗. Then, taking MO to be
the triangles with 1 and M I to be the triangles in −1 will complete the
proof.

The first stage ends up being not so hard for the case of trian-
gles (the proof Keevash gives in this paper doesn’t generalise to de-
signs). The idea is to construct the integral triangle decomposition as
φ = φ0 +φ1 +φ2 in three steps, where φ0 has the right “number” (with
multiplicity) of edges, φ0 + φ1 has the right “number” of edges, as well
as vertex degrees (again, with signs) and finally, φ0 + φ1 + φ2 has the
right everything.

For φ0, we simply choose |S|/3 independent random triangles in Kn;
note that the expected number of triangles containing a given vertex
v is Binomial with mean |S|/n < c2n/2 (since |S| ≤ n × c2n × 1

2
by

c2-boundedness). Therefore, by standard Chernoff bounds, we know
that w.h.p, the edge set of φ0 is 1.1c2 bounded.

Given φ0 as above, consider the signed collection of edges S − ∪φ0.
Since both S and ∪φ0 are tridivisible, it follows that the induced signed
degree at each vertex v is an even integer, and the sum of these signed
degrees is 0. Let’s break up the vector of signed degrees (denoted by
J∗) into positive and negative parts J∗±. Note that since S and ∪φ0

are O(c2)-bounded, it follows that each entry of J∗± is bounded by
O(c2n).

Instead of introducing more notation, it’s helpful to see the next
step via an example. Say n = 7 and J∗+ = (2, 4, 0, 0, 0, 2, 0), J∗− =
(0, 0,−4,−4, 0, 0, 0). Then, we can pair up the vertices as follows:
(1, 3), (2, 3), (2, 4)(6, 4). Note that in general, there will be at most

5

O(c2n× n) many pairs of this form. The idea here is that we want to
transfer degree from the first vertex of each pair to the second vertex
of each pair, and we can do this by choosing two random independent
vertices ai, bi for each pair xi, yi, and using the following construction
(see figure on board).

This fixes the degrees, but we still want some boundedness property
to hold. Namely, let ∪φ±1 denote the new edges of each sign added at
this step. Then, it is easy to see that ∪φ±1 are both O(c2)-bounded – a
fixed vertex v can only appear O(c2n) many times as some xi or yi, and
in each such occurence, we add at most 2 new edges incident to this
vertex. For every other round, the vertex is chosen with probability
1/n, so we expect at most O(1/n)× O(c2n

2) = O(c2n) many edges to
be added to a given vertex in any other round. Now, get concentration.

At this point, the only problem is that J1 = S − (∪φ0 + ∪φ1) may
not be equal to 0. In the STS case, there is an easy fix for this – since
the (signed) collection of edges J1 has signed degree 0 at each vertex,
we can decompose it into a collection of cycles with edges alternating
in sign (note that the cycles need not be proper). Each cycle can be
further decomposed into 4-cycles (see figure on board), and the thing to
note here is that in the process of decomposing into 4-cycles, the degree
of each vertex only goes up by some universal constant factor (say 3).
Moreover, since each of S, ∪φ0, ∪φ±1 are O(c2) bounded, there are at
most O(c2n) cycles including any given vertex v in this decomposition.

But now, given a 4-cycle, we can choose a random vertex from the
graph to serve as its “center”, and we obtain four signed triangles which
we can add to “cancel” the 4-cycle. So, the only thing that remains to
be checked is boundedness. This follows since each vertex has O(c2n)
cycles including it, and we expect each vertex to serve as the “center”
of a 4-cycle O(1/n× c2n2) = O(c2n) many times. Again, concentration
finishes the proof.

The last idea we will discuss today is that of “Octahedral Elimina-
tion”. This will play a big role both in Hole as well as Completion.
The idea here is that an octahedron has the following two desirable
properties: (i) it has a signed triangle decomposition such that the
sum on each edge is 0. Therefore, if we want to eliminate a triangle
while keeping the signed sum of edges the same, we can replace it by
the other seven triangles of an octahedron it is part of (ii) if we have
two triangles of opposite signs which share a common edge (think of
this common edge as “bad”), then we can replace them by the other
six triangles of an octahedron in which they occur, and note now that

6

we have also managed to eliminate the “bad” edge. This suggests the
following two phase algorithm to finish Hole.

(1) In Phase I, we eliminate the triangles in Φ = φ0 + φ1 + φ2: ar-
bitrarily order the triangles as f1, f2, . . . , f`. Then, for each fi, choose
a random octahedron configuration Ωfi to replace fi. The constraints
on the choice of octahedron is that the nine new edges should all be
in G∗, and moreover, that these new edges should be disjoint from all
new edges at previous steps, as well as the edges coming from Φ.

Let Φ′ denote the triangle decomposition at the end of Phase I. Note
that Φ′ and Φ have the same multiplicity on every edge. Note also that
every triangle in Φ′ has multiplicity in {±1, 0}. The point here is that
earlier, we had triangles which could have had three edges not in G∗,
but every triangle in Φ′ has at most one edge not in G∗. We’ve also
moved from integer multiplicites to {±1, 0} multiplicities on triangles.

(2) In Phase 2, we get rid of these “bad” edges. Denote the set
of new edges added in the last phase by Γ. Then, we have positive
multiplicities on ∪Φ+ and Γ, and negative multiplicities on ∪Φ− and
Γ. When we add these multiplicites, we are left with multiplicity 1 on
S. In particular, for any edge which is neither in S nor in Γ, we can
find two triangles of opposite signs which share that edge (and only
that edge). So, we fix a sequence of pairs of triangles doing this for all
these “bad” edges (with appropriate multiplicities), and for each such
pair, we choose a random octahedron to eliminate this pair (along with
the edge). Again, this randomness is conditioned on all the new edges
being in G∗, and being distinct from the edges in ∪Φ+ ∪ Γ, as well as
the edges chosen in previous steps. Denote all of the new edges added
in this phase by Γ′.

Now, if we let Ψ denote the resulting triangle decomposition, then
note that any triangle in Ψ only uses edges of G∗, and Ψ has the same
edge multiplicity as Φ. Moreover, each triangle in Ψ is assigned multi-
plicity {±0, 1}. So, if this algorithm works, we are done with Hole.

The analysis is very similar to the randomized greedy algorithm anal-
ysis we saw earlier today: we first show that Γ is c′2-bounded. As before,
the idea is that by the typicality of G∗and the boundedness of Φ, there
are many octahedra available at every step, and if Γ is c2’-bounded,
at most half the choices are excluded. This allows us to replace the
computation of the boundedness of Γ by a simpler random process

7

(with independent steps), and since Φ is c2-bounded and we are pick-
ing octahedra at random, Γ ends up remaining c′2-bounded w.h.p. (by
concentration).

Next, we want to show that Γ′ is some c′′2 bounded. Again, the
boundedness of Γ, Φ and the typicality of G∗, there are many available
octahedra at every step. The boundedness assumption on Γ′ implies
that at most half the choices are excluded, and we are able to pass
to a simpler random process. Then, since Φ is bounded, and we are
picking octahedra at random, Γ′ ends up remaining c′′2 bounded w.h.p.
(by concentration). Depending on time, we might do details next time,
but hopefully the idea is clear enough even now and we can all refer to
the proof of Lemma 3.2 for details.

