
April 20, 2018.

Hypergraph containers theorem I: Let k ∈ N be fixed. For
all c, ε > 0, there exists C > 0 for which the following holds. Let H
be a k-uniform hypergraph, and let F be an increasing family of sets
such that |A| ≥ εv(H) for all A ∈ F . Suppose H is (F , ε) dense (i.e.
e(H[A]) ≥ εe(H) for all A ∈ F), and p ∈ (0, 1) is such that for all
` ∈ [k],

∆`(H) ≤ c.p`−1.
e(H)

v(H)
.

Then, there exists a family S ⊆
(
V (H)
C.pv(H)

)
and functions f : S → F

and g : I(H) → S such that for all I ∈ I(H), g(I) ⊆ I and I\g(I) ⊆
f(g(I)).

The canonical example of increasing family F to keep in mind is
the set of all subsets of V (H) of size ≥ (1 − δ)v(H) for some fixed
δ > 0. In this case, the hypergraph containers theorem says that if
H is a k-uniform hypergraph satisfying certain technical assumptions,
then each independent set I of H can be fingerprinted using a small
subset S such that knowledge of the fingerprint S identifies a positive
constant fraction of the vertices that I avoids. In fact, the theorem
above for general increasing families follows from the next theorem for
this particular choice of increasing family.

Hypergraph containers theorem II: Let k ∈ N be fixed. For all
c0 > 0, there exists δ > 0 for which the following holds. Let H be a
k-uniform hypergraph, and let F0 be the increasing family of sets such
that |A| ≥ (1− δ)v(H) for all A ∈ F0. Suppose p0 ∈ (0, 1) is such that
for all ` ∈ [k],

∆`(H) ≤ c0p
`−1
0 .

e(H)

v(H)
.

Then, there exists a family S ⊆
(

V (H)
(k−1).pv(H)

)
and functions f0 : S →

F0 and g0 : I(H) → S such that for all I ∈ I(H), g0(I) ⊆ I and
I\g0(I) ⊆ f0(g0(I)). Moreover, if for some I, I ′ ∈ I(H), g0(I) ⊆ I ′

and g0(I ′) ⊆ I, then g0(I) = g0(I ′).

Let’s quickly sketch how to deduce HCT I given HCT II. Let c, ε,F ,H
be as in the statement of HCT I. We describe an algorithm to construct
S, f and g as in the conclusion of the theorem.

1

2

Algorithm (Input: I ∈ I(H)): Let S0 = ∅ and A0 = V . For
j = 0, 1, . . . , J do the following:

1. If Aj ∈ F , then apply HCT II to H[Aj] with the same p and with
c0 = c/ε to the set Ij := I ∩ Aj to get g0(Ij) and f0(g0(Ij)).

Why can we do this? Need to check that the assumptions of HCT
II hold for the choice of parameters above. This follows since

∆`(H[Aj]) ≤ ∆`(H[A]) ≤ c.p`−1.
e(H)

v(H)
≤ c.p`−1.

e(H)

v(H[Aj])
≤ c

ε
.p`−1 e(H[Aj])

v(H[Aj])

where the last inequality uses the fact that Aj ∈ F and H is (F , ε)-
dense.

2. Let Sj+1 = g0(Ij) and let Aj+1 = f0(g0(Ij)).

Observations:
(i) By construction, we have S0 ∪ · · · ∪ Sj ⊆ I ⊆ S0 ∪ · · · ∪ Sj ∪ Aj

for all j.
(ii) |Aj+1| ≤ (1 − δ)|Aj| for all j. Since any subset of F has size at

least εv(H) by assumption, it follows that we must terminate after at
most 1

δ
log 1

ε
steps. So, we can take J to be this quantity.

(iii) The size of the fingerprint is ≤
∑J

i=1 |Si| ≤
∑J−1

i=0 (k− 1)p|Ai| ≤
J(k − 1)pv(H). Hence, we can take C = J(k − 1).

So, the only thing that remains to be checked is the following: if two
independent sets I and I ′ have the same fingerprints S0 ∪ · · · ∪ SJ
and S ′0 ∪ · · · ∪ S ′J , then AJ = A′J . We will show something even
stronger. Let (Aj, Sj)

J
j=1 and (A′j, S

′
j)
J ′
j=1 be the sequences generated

by running the algorithm on I and I ′, and suppose S0 ∪ · · · ∪ SJ ⊆ I ′

and S ′0 ∪ · · · ∪ S ′J ⊆ I. It is easy to see that this inductively implies
Sj+1 ⊆ I ′j and S ′j+1 ⊆ Ij for all j. Therefore, Sj+1 = S ′j+1 for all j
by the conclusion of HCT II, and hence AJ = A′J as desired. So, we
see that the “consistency” property of HCT II allows us to essentially
decompose a complete fingerprint S into the smaller sets Si from which
it is algorithmically built.

Now, we move on to the proof of HCT II. As mentioned earlier, what
we want to do is to fingerprint independent sets in such a way that the
knowledge of the fingerprint helps us identify ≈ δ fraction of the ver-
tices that the independent set avoids. Intuitively, the idea is that the
fingerprint S will consist of the vertices with large k−1 degree, so that
once we know S, we know a large number of vertices which are forbid-
den from being in I. This motivates the so-called Scythe algorithm.

3

Scythe algorithm (Input: Hi+1, I ∈ I(Hi+1)). Let A(0)
i+1 =

Hi+1 be the initial set of “available edges”. Let H(0)
i be the empty

i-uniform hypergraph on the vertex set V (Hi+1); this is the initial set
of “forbidden edges”. For j = 0, 1, . . . , b− 1, where b = pv(H), do the
following:

1. Let uj be the first vertex of I in the max degree order on V (A(j)
i+1).

If I ∩V (A(j)
i+1) = ∅ (think of this as “atypical” for the algorithm), then

STOP with Hi = H(0)
i , Ai = ∅, Bi = {u0, . . . , uj−1}.

2. Add the edges incident to uj to H(j)
i in order to get H(j+1)

i .

3. LetA(j+1)
i+1 be the induced hypergraph on the vertex set V (A(j)

i+1)\W (uj),
where W (uj) is the set of all vertices which preceded uj in the max de-
gree order (so we know that these vertices are not in I) along with
uj.

4. Remove from A(j+1)
i+1 all edges which contain a set of vertices with

“high degree” in H(j+1)
i (this will be made precise at some point later

on).
If we have not already stopped i.e. if the above loop executes b times,

then set Hi = H(b)
i , Ai = V (A(b)

i+1) and Bi = {u0, . . . , ub−1}.

Observations
(i) Hi is i-uniform with V (Hi) = V (Hi+1).
(ii) I ∈ I(Hi+1) =⇒ I ∈ I(Hi) (since no “forbidden” edge can be

completely contained in I).
(iii) Bi ⊆ I ⊆ Ai ∪Bi.
(iv) The hypergraph Hi and the set Ai depend only on Hi+1 and the

set Bi (in particular, given Bi, we don’t need to know the input I).
(v) Suppose that on inputs (Hi+1, I) and (Hi+1, I

′), the algorithm
outputs (Ai, Bi,Hi) and (A′i, B

′
i,H′i) respectively. If Bi ⊆ I ′ and B′i ⊆

I, then (Ai, Bi,Hi) = (A′i, B
′
i,H′i). This property will be used to prove

“consistency” of fingerprints.

Algorithm for HCT II (Input: H satisfying assumptions of
HCT II, I ∈ I(H)). Let δ = (ck2k+1)−k. Set i = k − 1, and repeat
the following:

1. Apply the Scythe algorithm to Hi+1 and I. Suppose it outputs
(Ai, Bi,Hi).

2. If |Ai| ≤ (1− δ)v(H), then set q = i, r = i+ 1 and STOP.
3. If i > 1, then set i = i− 1. Otherwise, set q = r = 1 and STOP.

4

Let’s now define g0 and f0 as in the conclusion of HCT II: If r > 1,
then the above algorithm must have stopped in Step 2 with some
|Aq| ≤ (1 − δ)v(H). In this case, define g0(I) = Bk−1 ∪ · · · ∪ Bq

and f ∗0 (I) = Aq. If r = 1, then set g0(I) = Bk−1 ∪ · · · ∪ B1 and
f ∗0 (I) = {v ∈ V (H1) : {v} /∈ H1}.

Observations
(i) |g0(I)| ≤ (k − 1)pv(H) for every I ∈ I(H)
(ii) g0(I) ⊆ I ⊆ g0(I) ∪ f ∗0 (I)
(iii) Suppose for some I, I ′ ∈ I(H), g0(I) ⊆ I ′ and g0(I ′) ⊆ I.

Then, g0(I) = g0(I ′) and f ∗0 (I) = f ∗0 (I ′): Suppose we obtain the
sequence (Bk−1, . . . , Bq) while running the algorithm on I, and the
sequence (B′k−1, . . . , B

′
q′) while running the algorithm on I ′. Then,

Bi ⊆ g0(I) ⊆ I ′ and B′i ⊆ g0(I ′) ⊆ I for all i. Since Hk = H′k = H, it
follows by repeatedly applying observation (v) from the Scythe algo-
rithm that Bi = B′i for all i.

Next time, we will show that the following properties (P3), (P4) are
satisfied for all Hi during the execution of the above algorithm:

(P3) ∆`(Hi) ≤ ∆i
` for all ` ∈ [i], where ∆i

` := max{2.∆i+1
`+1, p.∆

i+1
` }

and ∆k
` := ∆`(H). The removals we do in Step 4 of the scythe algorithm

are to ensure that this holds. Also, by unwrapping the definition, one
can show that ∆i

1 ≤ c2kpk−ie(H)/v(H).
(P4) e(Hi) ≥ cip

k−1e(H) where ci = (ck2k+1)i−k. This will follow
since we choose vertices in max-degree order, and hence add sufficiently
many “forbidden” edges at each step.

Given these properties, let us show how to conclude:
(iv) |f ∗0 (I)| ≤ (1 − δ)v(H) for all I: If r > 1, then this is true by

construction. On the other hand, if r = 1, then since ∆1(H1) ≤ ∆1
1 ≤

c2kpk−1e(H)/v(H) by (P3), we have:

5

|{v ∈ V (H1) : {v} ∈ H1}| ≥
e(H1)

∆1(H1)

≥ c1p
k−1e(H)

∆1(H1)

≥ c1p
k−1e(H)

c2kpk−1e(H)/v(H)

=
(ck2k+1)1−k

c2k−1
v(H)

≥ δv(H),

where the second inequality uses (P4), the third inequality uses the
above bound on ∆(H1) coming from (P3), and the last inequality uses
δ = (ck2k+1)−k.

This finishes the proof modulo proving that (P3) and (P4) hold.

To finish for today, let’s discuss the intuition between the assumption
∆`(H) ≤ cp`−1e(H)/v(H).
(i) If we have too many isolated vertices, then we also have a large
independent set. Therefore, we want to ensure that at least ≈ δv(H)
vertices are not isolated. This amounts to the condition

ke(H)

∆1(H)
≥≈ δv(H),

or equivalently, ∆1(H) ≤ c e(H)
v(H)

for some constant c.

(ii) To see the conditions taking p into account, consider selecting a
random subset S of size pv(H) from the independent set I to be the
fingerprint. We hope that the number of edges of H that contain at
least k − 1 vertices of S is Ω(v(H)), since this is how the fingerprint
ends up being useful. This translates to the condition

e(H)

∆k(H)
pk−1 = Ω(v(H))

i.e. ∆k(H) ≤ cpk−1e(H)/v(H).
(iii) Continuing with the same setup as before, imagine a situation

where given a vertex v, there is a small collection of `-sets (2 ≤ ` ≤ k−
1) such that every edge covering a vertex v contains one of these `-sets.
Note that the size of this collection is at least Ω(degH(v)/∆`(H)), and
by a small collection, we mean that it is actually Θ(degH(v)/∆`(H)).
In order to exclude v, S should contain at least ` − 1 elements in at
least one of these `-sets. Since the expected number of such `-sets that

6

have ≥ ` − 1 elements common with S is Θ(degH(v)p`−1/∆`(H)), it
follows by summing over v that we should have

e(H)p`−1

∆`(H)
= Ω(v(H))

i.e. ∆`(H) ≤ cp`−1e(H)/v(H)
(iv) Note that while this heuristic gives good intuition for the pa-

rameters, (ii) and (iii) are not quite accurate, since there are other
mechanisms through which a fingerprint may be useful. For instance,
consider the disjoint union of the complete k-uniform hypergraph on n
vertices and the empty k-uniform hypergraph on n vertices. Then, the
fingerprint for an independent set I in the empty graph does not work
by producing any “forbidden” edges. Rather, when we process vertices
in maximum degree order, we skip all the vertices in the complete part
before finding a vertex which is present in I.

7

April 27, 2018.

Last week, we sketched how to prove the following theorem:
Hypergraph containers theorem II: Let k ∈ N be fixed. For all

c > 0, there exists δ > 0 (we can take δ = (ck2k+1)−k) for which the
following holds. Let H be a k-uniform hypergraph, and let F be the
increasing family of sets of size at least (1− δ)v(H). Suppose p ∈ (0, 1)
is such that for all ` ∈ [k],

∆`(H) ≤ cp`−1.
e(H)

v(H)
.

Then, there exists a family S ⊆
(

V (H)
(k−1).pv(H)

)
and functions f : S → F

and g : I(H) → S such that for all I ∈ I(H), g(I) ⊆ I and I\g(I) ⊆
f(g(I)). Moreover, if for some I, I ′ ∈ I(H), g(I) ⊆ I ′ and g(I ′) ⊆ I,
then g(I) = g(I ′).

The proof is based on the so-called Scythe algorithm, and we com-
pleted the proof modulo the following two claims:

(P3) ∆`(Hi) ≤ ∆i
` for all ` ∈ [i], where ∆i

` := max{2.∆i+1
`+1, p.∆

i+1
` }

and ∆k
` := ∆`(H).

Intuitively, this property holds because of the step in the Scythe
algorithm where we remove all edges containing “dangerous” subsets.

(P4) e(Hi) ≥ cip
k−ie(H) where ci = (ck2k+1)i−k i.e. e(Hi) ≥(

p
ck2k+1

)k−i
e(H)

Intuitively, this property holds because we choose vertices in the in-
dependent set which have high degree.

Remark: We also claimed that ∆i
1 ≤ c2kpk−ie(H)/v(H), but this

is easy to see from the definition above. Indeed,

∆i
1 ≤ max

0≤d≤k−i

{
2dpk−i−d∆d+1(H)

}
≤ max

0≤d≤k−i

{
2dpk−i−dcpd

e(H)

v(H)

}
≤ c.2kpk−i

e(H)

v(H)
.

In order to prove (P3) and (P4), we begin with some notation. For
an i-uniform hypergraph G and ` ∈ [i], let

M i
`(G) :=

{
T ∈

(
V (G)

`

)
: degG(T) ≥ ∆i

`

2

}
denote the collection of “dangerous” `-subsets. Now, we can com-

plete our description of the Scythe algorithm from last time.

8

Scythe algorithm (Input: Hi+1, I ∈ I(Hi+1)). Let A(0)
i+1 =

Hi+1 be the initial set of “available edges”. Let H(0)
i be the empty

i-uniform hypergraph on the vertex set V (Hi+1); this is the initial set
of “forbidden edges”. For j = 0, 1, . . . , b− 1, where b = pv(H), do the
following:

1. Let uj be the first vertex of I in the max degree order on V (A(j)
i+1).

If I ∩V (A(j)
i+1) = ∅ (think of this as “atypical” for the algorithm), then

STOP with Hi = H(0)
i , Ai = ∅, Bi = {u0, . . . , uj−1}.

2. Add the edges incident to uj to H(j)
i in order to get H(j+1)

i .

3. LetA(j+1)
i+1 be the induced hypergraph on the vertex set V (A(j)

i+1)\W (uj),
where W (uj) is the set of all vertices which preceded uj in the max de-
gree order (so we know that these vertices are not in I) along with
uj.

4. Remove from A(j+1)
i+1 all edges which contain any subset in

∪i`=1M
i
`(H

(j+1)
i).

If we have not already stopped i.e. if the above loop executes b times,

then set Hi = H(b)
i , Ai = V (A(b)

i+1) and Bi = {u0, . . . , ub−1}.

It’s relatively easy to see that (P3) holds inductively i.e. if ∆`+1(Hi+1) ≤
∆i+1
`+1 for some ` ∈ [i], then ∆`(Hi) ≤ ∆i

`.

(i) If degH(j)
i

(T) ≥ ∆i
`

2
for some T ∈

(
V (H)
`

)
and j ∈ [b], then all edges

containing T are removed from A(j)
i+1, and hence no further such edges

can be added to Hi. Therefore, degHi
(T) = degH(j)

i
(T).

(ii) So, the only danger is that when we went from H(j−1)
i to H(j)

i , we
already added too many edges containing T . But this cannot happen

either: when going from H(j−1)
i to H(j)

i , we add all i-subsets D which,

together with {uj}, form an (i + 1)-edge in A(j−1)
i+1 . Therefore, if T

contains uj, then no edges containing T are added from H(j−1)
i to H(j)

i .
On the other hand, if T does not contain uj, then

degH(j)
i

(T)− degH(j−1)
i

(T) ≤ degHi+1
(T ∪ {uj}) ≤ ∆|T |+1(Hi+1).

Putting everything together, we get

∆`(Hi) ≤
∆i
`

2
+ ∆`+1(Hi+1) ≤ ∆i

`

2
+ ∆i+1

`+1 ≤ ∆i
`.

Finally, we will show that assuming (P3) and (P4) hold for Hi+1,
then either (P4) holds for Hi, or |Ai| ≤ (1 − ci)v(H) (in which case,

9

we just stop). Recall that ci := (ck2k+1)i−k. In fact, we will show the
stronger statement that if |Ai| > (1− ci)v(H), then we must have

e(Hi) ≥
p

c2k+1k
e(Hi+1).

To set this up, let’s start with a preliminary computation. Let Ã(j)
i+1

denote the subhypergraph induced by A(j)
i+1 on the vertex set {uj} ∪

V (A(j)
i+1)\W (uj). Then,

e(H(j+1)
i)− e(H(j)

i) = degA(j)
i+1

(uj)

≥
(i+ 1)e(Ã(j)

i+1)

v(Ã(j)
i+1)

≥
(i+ 1)e(A(j+1)

i+1)

v(H)

Case 0: If (i + 1)e(A(j+1)
i+1) ≥ e(Hi+1) for every j ∈ {0, . . . , b − 1},

then

e(Hi) ≥
b−1∑
j=0

(i+ 1)e(A(j+1)
i+1)

v(H)
≥ b.

e(Hi+1)

v(H)
= p.e(Hi+1) ≥ p

2k+1k
e(Hi+1)

and we are done.

So, we may assume that for some j,

e(A(b)
i+1) ≤ e(A(j+1)

i+1) <
e(Hi+1)

i+ 1
.

In particular, we are assuming that during the execution of the
Scythe algorithm, many edges are removed from Hi+1. We will show
that this happens only if either many of the W (uj)’s are large in size, or
some family M i

`(Hi) is large. The next computation makes this formal.

First, note that

e(A(j)
i+1)− e(A(j+1)

i+1) ≤ |W (uj)|.∆1(Hi+1) +
i∑

`=1

∣∣∣M i
`(H

(j+1)
i \M i

`(H
(j)
i)
∣∣∣ .∆`(Hi+1)

≤ |W (uj)|.∆i+1
1 +

i∑
`=1

∣∣∣M i
`(H

(j+1)
i \M i

`(H
(j)
i)
∣∣∣ .∆i+1

` ,

10

where the second inequality holds by our inductive assumption that
(P3) holds for Hi+1. Summing this over j, we get

i

i+ 1
e(Hi+1) ≤ e(Hi+1)−e(A(b)

i+1) ≤
b−1∑
j=0

|W (uj)|.∆i+1
1 +

i∑
`=1

|M i
`(H

(b)
i)|.∆i+1

`

Therefore, if
∑b−1

j=0 |W (uj)|.∆i+1
1 < e(Hi+1)

4
≤ i

2(i+1)
.e(Hi+1), then we

must have
∑i

`=1 |M i
`(H

(b)
i)|.∆i+1

` ≥ 1
2

i
i+1
e(Hi+1), and hence |M i

`(H
(b)
i)| ≥

1
2(i+1)

.e(Hi+1) for some ` ∈ [i].

Case 1: |M i
`(Hi)| ≥ 1

2(i+1)∆i
`
.e(Hi+1) for some ` ∈ [i]. In this case

e(Hi) =
∑

T∈(V (H)
`)

degHi
(T)/

(
i

`

)

≥
∑

T∈M i
`(Hi)

degHi
(T)/

(
i

`

)

≥ |M i
`(Hi)|.∆i

`/2

(
i

`

)
≥ ∆i

`

2i+2(i+ 1)∆i+1
`

e(Hi+1)

≥ p

2k+1k
e(Hi+1)

since ∆i
` ≥ p∆i+1

` .

11

Case 2:
∑b−1

j=0 |W (uj)| ≥ 1

4∆i+1
1

.e(Hi+1). In this case, we will show

that |Ai| ≤ (1− ci)v(H). Indeed,

v(H)− |Ai| = v(A(0)
i+1)− v(A(b)

i+1)

=
b−1∑
j=0

|W (uj)|

≥ e(Hi+1)

4∆i+1
1

≥ e(Hi+1)

4
.

(
v(H)

e(H)
.
pi+1−k

c2k

)
≥ ci+1p

k−(i+1)e(H)

4
.

(
v(H)

e(H)
.
p(i+1)−k

c2k

)
≥ ci+1

c2k+2
v(H)

≥ civ(H).

