HOMEWORK 1

DUE 01/23 AT 7:00AM PST
(1) Consider a symmetric simple random walk starting from $S_{0}=0$. For $A, B \geq 0$, let

$$
\tau_{(A,-B)}=\inf \left\{n \geq 0: S_{n}=A \text { or } S_{n}=-B\right\}
$$

Show that for any $A, B>0$,

$$
\mathbb{P}\left[\tau_{(A,-B)}<\infty\right]=1
$$

(2) Consider $n+1$ points on a circle labelled (counterclockwise) as $0,1, \ldots, n$. Consider the symmetric simple random walk on this circle with $n+1$ points starting at 0 .
(a) Show that with probability 1 , the walk will eventually visit all $n+1$ points.
(b) Show that for any $k \in\{1, \ldots, n\}$, the probability that k is the last point visited by the walk is $1 / n$.
(c) Let T denote the first time when the random walk has visited all the points. Compute $\mathbb{E}[T]$.

Hint: Let τ_{i} denote the first time that the walk has visited i distinct points and let τ_{i+1} denote the first time that the walk has visited $i+1$ points. Argue that $\mathbb{E}\left[\tau_{i+1}-\tau_{i}\right]=i$.
(3) Consider a symmetric simple random walk in k dimensions starting from $(0,0, \ldots, 0)$. This walk is described by the following rule: if the current state is $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$, then the next state is $\left(x_{1} \pm\right.$ $1, x_{2} \pm 1, \ldots, x_{k} \pm 1$) and each of these 2^{k} possibilities occurs with probability 2^{-k}.
(a) What is the probability that the walk is at $(0,0,0,0)$ at time ℓ ?
(b) For $k=1,2,3$ estimate (you may use a computer) the expected number of times that the walk is at $(0, \ldots, 0)$.
(4) Let $\left(S_{n}\right)_{n \geq 0}$ and $\left(S_{n}^{\prime}\right)_{n \geq 0}$ be two independent symmetric simple random walks starting from $S_{0}=0=S_{0}^{\prime}$. For $j \in \mathbb{Z}$, let T_{j} denote the number of times that the two walks meet at j i.e.

$$
T_{j}=\left|\left\{n \geq 0: S_{n}=j=S_{n}^{\prime}\right\}\right|
$$

What is $\mathbb{E}\left[T_{j}\right]$?
(5) Suppose Alice and Bob are playing a game in which Alice wins each round with probability p and Bob wins each round with probability $q=1-p$. The results of different rounds are independent. The winner of the game is the player who first wins $2 n+1$ rounds.
(a) What is the probability that Alice wins the game in r rounds?
(b) What is the probability that the game ends in r rounds?
(c) $(*)$ Suppose that $p=q=1 / 2$. Find the expected length of the game and use Stirling's approximation to estimate your result.
Hint: Let p_{r} denote the probability that the game ends in $4 n+1-r$ rounds. Show that

$$
(2 n-r) p_{r}=\frac{1}{2}(4 n+1) p_{r+1}-\frac{1}{2}(r+1) p_{r+1}
$$

and use that $\sum_{r} p_{r}=1$.
(6) Let $\left(S_{n}\right)_{n \geq 0}$ be a symmetric simple random walk starting at $S_{0}=0$. Show that
(a) $(*) \mathbb{P}\left[S_{1} \neq 0, S_{2} \neq 0, \ldots, S_{2 k} \neq 0\right]=\mathbb{P}\left[S_{2 k}=0\right]$.
(b) $\mathbb{P}\left[S_{1}>0, S_{2}>0, \ldots, S_{2 k}>0\right]=\frac{1}{2} \mathbb{P}\left[S_{2 k}=0\right]$.
(c) $(*) \mathbb{P}\left[S_{1} \geq 0, S_{2} \geq 0, \ldots, S_{2 k} \geq 0\right]=\mathbb{P}\left[S_{2 k}=0\right]$.
(7) Let $\left(S_{n}\right)_{n \geq 0}$ be a simple random walk for which each step is independently +1 with probability p and -1 with probability $q=1-p$. Suppose that $S_{0}=0$. Show that:
(a) For any $k>0$,

$$
\mathbb{P}\left[S_{1}>0, \ldots, S_{n-1}>0, S_{n}=k\right]=\frac{k}{n} \mathbb{P}\left[S_{n}=k\right]
$$

(b) For any $k \neq 0$,

$$
\mathbb{P}\left[S_{1} \neq 0, \ldots, S_{n-1} \neq 0, S_{n}=k\right]=\frac{|k|}{n} \mathbb{P}\left[S_{n}=k\right]
$$

(c) $\mathbb{P}\left[S_{1} \neq 0, \ldots, S_{n} \neq 0\right]=\frac{\mathbb{E}\left[\left|S_{n}\right|\right]}{n}$.
(8) Let $\left(S_{n}\right)_{n \geq 0}$ be a symmetric simple random walk starting at $S_{0}=0$. For any integer x, let

$$
\tau_{x}=\min \left\{n \geq 0: S_{n}=x\right\}
$$

be the first time to visit x and for any $n=0,1,2, \ldots$ let

$$
M_{n}=\max \left\{S_{0}, S_{1}, \ldots, S_{n}\right\}
$$

be the maximum value of the walk until time n. Show that:
(a) For $x \geq 0$,

$$
\mathbb{P}\left[M_{m} \geq x\right]=\mathbb{P}\left[\tau_{x} \leq m\right]
$$

(b) For any $y \geq 0$ and for any x,

$$
\mathbb{P}\left[M_{n} \geq y, S_{n}=x\right]= \begin{cases}\mathbb{P}\left[S_{n}=x\right] & \text { if } x \geq y \\ \mathbb{P}\left[S_{n}=2 y-x\right] & \text { if } x<y\end{cases}
$$

Hint: If $x<y$, then reflect the path after the first time it hits y.
(c) For any $y \geq 0$,

$$
\mathbb{P}\left[M_{n} \geq y\right]=\mathbb{P}\left[S_{n}=y\right]+2 \mathbb{P}\left[S_{n}>y\right]
$$

(d) For any $y \geq 0$,

$$
\mathbb{P}\left[M_{n}=y\right]=\max \left\{\mathbb{P}\left[S_{n}=y\right], \mathbb{P}\left[S_{n}=y+1\right]\right\}
$$

(9) (*) Let $\left(S_{n}\right)_{n \geq 0}$ be a symmetric simple random walk starting at $S_{0}=0$. For $n=0,1, \ldots$, let

$$
M_{n}=\max \left\{S_{0}, S_{1}, \ldots, S_{n}\right\}
$$

be the maximum value of the walk until time n. For $n \geq 1$, let

$$
\tau_{2 n}=\min \left\{0 \leq i \leq 2 n: S_{i}=M_{2 n}\right\}
$$

In words, $\tau_{2 n}$ is the first time that the walk attains its maximum value in the first $2 n$ steps. Show that:
(a) $\mathbb{P}\left[\tau_{2 n}=0\right]=\mathbb{P}\left[S_{2 n}=0\right]$.
(b) $\mathbb{P}\left[\tau_{2 n}=2 n\right]=\frac{1}{2} \mathbb{P}\left[S_{2 n}=0\right]$.
(c) For any $0<k<2 n$, writing $k=2 m$ or $k=2 m+1$,

$$
\mathbb{P}\left[\tau_{2 n}=k\right]=\frac{1}{2} \mathbb{P}\left[S_{2 m}=0\right] \mathbb{P}\left[S_{2 n-2 m}=0\right]
$$

Hence, for $1 \leq m \leq n-1$,

$$
\mathbb{P}\left[\tau_{2 n}=2 m \text { or } \tau_{2 n}=2 m+1\right]=\mathbb{P}\left[S_{2 m}=0\right] \mathbb{P}\left[S_{2 n-2 m}=0\right]
$$

Hint: Use time reversal along with the results of Problem 6.

