
HOMEWORK 6

DUE 02/27 AT 7:00PM PST

(1) Consider the two-state Markov chain with transition matrix

P =

 A B
A 1− p p
B q 1− q


where p, q ∈ (0, 1). Show that

P[Xn = A] =
q

p+ q
+ (1− p− q)n

(
P[X0 = A]− q

p+ q

)
.

Thus, since |1− p− q| < 1, P[Xn = A] converges exponentially fast to the limiting value π(A) = q/(p+ q), where
π is the unique stationary distribution.

(2) Consider the Gambler’s ruin problem in which a gambler, who starts with K dollars, makes a sequence of
independent bets in which she wins 1 dollar with probability p and loses 1 dollar with probability 1 − p. The
gambler leaves the casino whenever her wealth hits a target N (N > K) or she goes broke. Assume that K > 1.
Find the probability of the following event: the gambler leaves the casino with N dollars and at some time before
she leaves, her total wealth is 1 dollar.

(3) Consider a standard 8 × 8 chessboard, and recall that the king can move to any of the adjacent squares (if the
king is in the middle of the board, there are 8 options; if the king is in a corner, there are 3 options, and so on).
Consider the random walk on the chessboard in which, at every time step, one of the available legal moves for
the king is chosen uniformly at random.

(a) Find the stationary distribution of this random walk.

(b) If the king starts in the bottom left corner, what is the expected number of moves for the king to first return
to the bottom left corner?

(4) Consider a Markov chain on a finite state space {1, . . . , N} where {1, . . . , r} are transient states and {r, . . . , N}
are absorbing states. Recall that the transition matrix for such a chain is of the form

P =

[
Q R
0 I

]
(a) Show that, given vr+1, . . . , vN ≥ 0 such that vr+1 + · · ·+ vN = 1, the vector

π = (0, 0, . . . , 0, vr+1, . . . , vN ) ∈ RN

is a stationary distribution of P .

(b) Show that these are all the stationary distributions of P .

(5) (Time reversals) Let (Xn)0≤n≤N be an irreducible Markov chain with finite state space S and transition matrix
P . Define the time-reversed chain (Yn)0≤n≤N by Yn = XN−n for all 0 ≤ n ≤ N .

(a) Show that (Yn)0≤n≤N satisfies the Markov property i.e. for all 1 ≤ k ≤ N and for all i0, i1, . . . , ik ∈ S,

P[Yk = ik | Yk−1 = ik−1, . . . , Y0 = i0] = P[Yk = ik | Yk−1 = ik−1].

(b) Suppose the unique stationary distribution of P is π and X0 ∼ π. Show that for any a, b ∈ S,

P[Yn+1 = b | Yn = a] =
π(b)

π(a)
Pb,a.
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In particular, show that if P satisfies the detailed balance condition with respect to π, then

P[Yn+1 = b | Yn = a] = Pa,b.

For this reason, chains satisfying the detailed balance condition are called (time) reversible.

(6) (Metropolis chain with a general base) Let π be a probability distribution on a finite set S and let Ψ be an
irreducible transition matrix on S. Consider the Markov chain with the following transition rule: when at state
x ∈ S, generate a state y from Ψ(x, ·). Then, move to y with probability

min

(
1,
π(y)Ψy,x

π(x)Ψx,y

)
and remain at x with the complementary matrix. Denote the transition matrix of this chain by P . Show that P
is reversible with respect to π.

(7) (∗) Consider an undirected graph G = (V,E) with vertex set V and edge set E. Let w : E → R>0 be an
assignment of positive weights to edges. The random walk on the weighted undirected graph is defined as follows:
let the current state be x and let NG(x) denote the neighbors of x i.e. the set of vertices that share an edge
with x. Then, the probability that the next state is y is 0 if y /∈ NG(x) and w({x.y})/

∑
z∈NG(x) w({x, z}) if

y ∈ NG(x).

(a) Suppose that the graph G = (V,E) is connected. Show that this chain is irreducible and find its stationary
distribution.

(b) Consider an irreducible Markov chain on S with transition matrix P which is reversible with respect to its
stationary distribution π. Argue that this can be viewed as a random walk on a weighted undirected graph with
vertex set |S|.

Hint: Look at w({x, y}) = πxPx,y. Where do you use reversibility?

(8) (∗) In card shuffling, we are given a deck of n cards and want to sample from the uniform distribution π on the
set S of all permutations of {1, . . . , n}. Show that the following shuffling procedures correspond to irreducible,
aperiodic Markov chains on S with the unique stationary distribution π.

(a) Random transposition shuffle: Pick two cards i and j uniformly at random with replacement, and switch
cards i and j.

(b) Top-to-random shuffle: Take the top card and place it at one of the n positions in the deck chosen uniformly
at random.

Hint: Show that the transition matrix is doubly-stochastic.

(c) Riffle shuffle: (i) Split the deck into two parts according to Binomial(n, 1/2), (ii) hold one part in your left
hand and the other part in your right hand with the bottom of each deck facing the table, (iii) merge the two
parts by dropping cards in sequence, where if you have L cards in your left hand and R cards in your right hand
at some point, then the probability that the next card comes from your left hand is L/(L+R).

(9) (∗) Let P be an irreducible, aperiodic transition matrix on S with |S| = n. Since P is irreducible and aperiodic,
the Perron-Frobenius theorem asserts that we can index the eigenvalues of A as λ1, . . . , λn, where λ1 = 1 and
|λi| < 1 for all i > 2. Let π be the unique stationary distribution of P and suppose further that P is reversible
with respect to π.

(a) Let D be the |S| × |S| diagonal matrix with D(x, x) =
√
π(x). Show that DPD−1 is a symmetric matrix.

Then, use the spectral theorem from linear algebra to argue that all the eigenvalues of P are real and that there
is a basis of left-eigenvectors v1, . . . , vn of P such that vi is a left-eigenvector for λi.

(b) Use this to provide a proof of the fundamental theorem for Markov chains in the reversible case i.e. to show
that for any x, y ∈ S, P t

x,y → π(y) as t→∞.
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