
HOMEWORK 8

DUE 03/13 AT 7:00PM PST

(1) (due to Durrett) At the beginning of each day, a piece of equipment is inspected to determine its working
condition, which is classified as 1 = new, 2, 3, or 4 = broken. We assume that the state is a Markov chain with
the following transition matrix: 

1 2 3 4
1 0.95 0.05 0 0
2 0 0.9 0.1 0
3 0 0 0.875 0.125


(a) Suppose that a broken machine requires three days to fix. To incorporate this into the Markov chain, we
add states 5 and 6 and suppose that p(4, 5) = 1, p(5, 6) = 1, and p(6, 1) = 1. Find the fraction of time that the
machine is working.

(b) Suppose now that we have the option of performing preventative maintenance when the machine is in state
3, and that this maintenance takes one day and returns the machine to state 1. This changes the transition
probability to 

1 2 3
1 0.95 0.05 0
2 0 0.9 0.1
3 1 0 0


Find the fraction of time the machine is working under this new policy.

(2) Let P be an aperiodic, irreducible, transition matrix on a finite state space S. Let π denote the unique stationary
distribution.

(a) Let (X̂t, Ŷt)t≥0 be a coupling of two copies of the Markov chain with transition matrix P and with initial
distributions X̂0 ∼ µ and Ŷ0 ∼ ν, where µ and ν are probability distributions on S. As before, let

τcouple = min{t ≥ 0 : X̂t = Ŷt}.

Show that

TV(µP t, νP t) ≤ P[τcouple > t].

(b) Fix x ∈ S. Let µ = δx (i.e. µ({x}) = 1) and let ν = π. Show that for the corresponding independent coupling
(X̂t, Ŷt), there exists some r0 ≥ 1 and some ε > 0 such that

P[τcouple > kr0] ≤ (1− ε)k.

This provided another proof of the convergence theorem.

(3) A birth-and-death chain has state space S = {0, 1, . . . , n} and in each step, can change its position (in absolute
value) by at most 1. Formally, the transition matrix P is completely specified by the collection (pk, qk, rk)

n
k=0

where for all 0 ≤ k ≤ n, pk + qk + rk = 1 and
• pn = q0 = 0.
• Pk,k+1 = pk, 0 ≤ k < n.
• Pk,k−1 = qk, 0 < k ≤ n.
• Pk,k = rk, 0 ≤ k ≤ n.

We further assume that pk > 0 for all 0 ≤ k < n and qk > 0 for all 0 < k ≤ n.

(a) Show that every such birth-and-death chain is irreducible and reversible and find the unique stationary
distribution π.
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(b) Fix ` ∈ {1, . . . , n} and let τ` denote the first time that the chain visits `. Show that

E[τ` | X0 = `− 1] =
1

q`π`

`−1∑
j=0

πj .

(c) Consider the special case when (qk, rk, pk) = (q, r, p) for 1 ≤ k < n, (q0, r0, p0) = (0, r+q, p) and (qn, rn, pn) =
(q, r + p, 0), where p, q > 0 and p+ q + r = 1. Show that, if p 6= q, then

E[τ` | X0 = `− 1] =
1

p− q

(
1−

(
q

p

)`)
and deduce that

E[τn | X0 = 0] =
1

p− q

(
n− q

(
1− (q/p)n

p− q

))
.

(4) (∗) A group is a set G endowed with an operation · : G×G→ G and a special identity element id ∈ G such that
• id ·g = g = g · id ∀g ∈ G.
• (g · h) · k = g · (h · k) ∀g, h, k ∈ G.
• For every g ∈ G, there exists an inverse g−1 ∈ G such that g · g−1 = id = g−1 · g.

Let µ be a probability distribution on the group G. Consider the (left) random walk on G whose transition
matrix is given by

Pµ(g, h · g) = µ(h) ∀g, h ∈ G.

(a) Let Unif(G) denote the uniform distribution on G. Show that Unif(G) is a stationary distribution for the
random walk on G with transition matrix Pµ.

(b) Show that µ(g) = µ(g−1) for every g ∈ G if and only if Pµ is reversible with respect to Unif(G).

(c) Consider the reversed distribution µ̂ defined by µ̂(g) := µ(g−1) for all g ∈ G. Let π = Unif(G). Show that

TV(P tµ(id, ·), π) = TV(P tµ̂(id, ·), π).

(d) Recall the library chain on Problem 8 of Homework 7. Suppose that pi1 = · · · = pin , so that the chain is
irreducible, aperiodic, and the unique stationary distribution is the uniform distribution on all permutations of
{1, . . . , n}. Show that for any ε ∈ (0, 1),

τmix(ε) ≤ n logn+ n log(ε−1).
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