HOMEWORK 9

DUE 03/19 (FRIDAY) AT 7:00PM PST

Let $\left(X_{n}\right)_{n \geq 0}$ denote a DTMC on Ω with transition matrix P, where Ω is either finite or countably infinite. As before P is said to be irreducible if for any pair of states $x, y \in \Omega$, there exists some $t \geq 0$ such that $P_{x, y}^{t}>0$.

For a state $x \in \Omega$, let

$$
\tau_{x}^{+}:=\min \left\{n \geq 1: X_{n}=x\right\}
$$

and for a pair of states $x, y \in \Omega$, let

$$
N(x, y)=\sum_{n=0}^{\infty} P_{x, y}^{n}=\mathbb{E}\left[\sum_{n=0}^{\infty} 1_{\left\{X_{n}=y\right\}} \mid X_{0}=x\right]
$$

We say that x is recurrent if $\mathbb{P}\left[\tau_{x}^{+}<\infty \mid X_{0}=x\right]=1$ and that x is transient otherwise.
The same argument as for the finite state space case shows that the following statements are equivalent for irreducible P :

- x is recurrent for some $x \in \Omega$.
- $N(x, x)=\infty$ for some $x \in \Omega$.
- $N(x, y)=\infty$ for all $x, y \in \Omega$.
- $\mathbb{P}\left[\tau_{y}^{+}<\infty \mid X_{0}=x\right]=1$ for all $x, y \in \Omega$.

A recurrent state $x \in \Omega$ is called positive recurrent if $\mathbb{E}\left[\tau_{x}^{+} \mid X_{0}=x\right]<\infty$, and null recurrent otherwise. In class, we showed that if Ω is finite, then every recurrent state is positive recurrent. However, as the example of the simple symmetric random walk on \mathbb{Z} shows, a recurrent state need not be positive recurrent.
(1) For irreducible P, show that the following are equivalent:

- $\mathbb{E}\left[\tau_{x}^{+} \mid X_{0}=x\right]<\infty$ for some $x \in \Omega$.
- $\mathbb{E}\left[\tau_{y}^{+} \mid X_{0}=x\right]<\infty$ for all $x, y \in \Omega$.

In particular, it makes sense to classify an irreducible chain as transient, positive recurrent, or null recurrent.
(2) (*) For irreducible and recurrent P, suppose that there exists a stationary distribution i.e., a probability distribution π on Ω satisfying $\pi=\pi P$. Show that:

- $\pi_{x}>0$ for all $x \in \Omega$.
- $\pi_{x} \cdot \mathbb{E}\left[\tau_{x}^{+} \mid X_{0}=x\right]=1$ for all $x \in \Omega$.
(3) For irreducible P, show that the following are equivalent:
- P is positive recurrent.
- There exists a probability distribution π on Ω such that $\pi=\pi P$.

Moreover, show that such a probability distribution is unique.
Hint: Use Problem 2
(4) (*) Let P be irreducible, aperiodic, and positive recurrent. By the previous problem, P has a unique stationary distribution π. Show that, for all $x \in \Omega$,

$$
\lim _{t \rightarrow \infty} \operatorname{TV}\left(P^{t}(x, \cdot), \pi\right)=0
$$

Hint: You may use a similar argument as Problem 2 of Homework 8. To show that the chains couple with probability 1, it may help to show that the product chain on $\Omega \times \Omega$ with transition matrix $Q((a, b),(x, y))=$ $P(a, x) P(b, y)$ is also irreducible and positive recurrent.
(5) (Polya's theorem) Let \mathbb{Z}^{d} denote the d-dimensional integer lattice. Thus, elements of \mathbb{Z}^{d} are of the form $\left(z_{1}, \ldots, z_{d}\right)$ for $z_{i} \in \mathbb{Z}$. The simple symmetric random walk on \mathbb{Z}^{d} has the following transitions: if the current state is $\left(z_{1}, \ldots, z_{d}\right)$, then there are $2 d$ possibilities for the next state, given by

$$
\left(z_{1}+1, z_{2}, \ldots, z_{d}\right),\left(z_{1}-1, z_{2}, \ldots, z_{d}\right), \ldots,\left(z_{1}, z_{2}, \ldots, z_{d}+1\right),\left(z_{1}, z_{2}, \ldots, z_{d}-1\right)
$$

and each of these $2 d$ transitions are equally likely.
Show that the simple random walk on \mathbb{Z}^{d} is recurrent for $d \leq 2$ and transient for $d \geq 3$. Therefore, "a drunk man will find his way home, but a drunk bird may get lost forever" (quote attributed to S. Kauktani).

Hint: For $i=1, \ldots, d$, let $N_{i}(n)$ denote the number of steps taken in the $i^{\text {th }}$ direction by time n. Show that there exists some constant $c_{d}>0$ such that $\mathbb{P}\left[N_{i}(n) \in[n / 2 d, 2 n / d]\right.$ for all $\left.i \in[d]\right] \geq 1-\exp \left(-c_{d} n\right)$.

