STATS 217: Introduction to Stochastic Processes I

Lecture 1

Course information

- Instructor: Vishesh Jain
- TAs: Sohom Bhattacharya, Michael Feldman, Disha Ghandwani.
- Final grade based entirely on 9 problem sets. See "Grading" section of course website for policies and further details.
- Course website: jainvishesh.github.io/STATS217_Winter2021.html.
- There are also associated Canvas and Gradescope sites that you should be enrolled in.

Symmetric simple random walk

- X_{1}, X_{2}, \ldots is a sequence of independent and identically distributed (i.i.d.) Rademacher random variables i.e.,

$$
\mathbb{P}\left[X_{i}=1\right]=\mathbb{P}\left[X_{i}=-1\right]=1 / 2 \quad \forall i .
$$

- Interpretation: a gambler places bets on the outcome of fair coin tosses. If the outcome is heads, she wins $\$ 1$ and if the outcome is tails, she loses $\$ 1$. X_{i} records the payout to the gambler in the $i^{\text {th }}$ round.
- Denote the initial wealth of the gambler by S_{0}.
- So, after n rounds of betting, the wealth of the gambler is

$$
S_{n}:=S_{0}+X_{1}+\cdots+X_{n} .
$$

Symmetric simple random walk

- Question 1: What is the probability that the gambler is up by $\$ 100$ before being down by $\$ 100$?
- Question 2: What is the probability that the gambler is up by $\$ 200$ before being down by $\$ 100$?
- Question 3: Suppose that the gambler stops playing once she is either up by $\$ 200$ or down by $\$ 100$. What is the expected number of rounds she plays?
- Question 4: Suppose that the gambler stops playing once she is down by $\$ 100$. What is the probability that she stops? What is the expected number of rounds she plays?
- Question 5: How do these answers change if $\mathbb{P}\left[X_{i}=1\right]=0.49$?

Hitting time

- Given integers $A>0, B>0$, let

$$
\tau=\tau_{(A,-B)}:=\min \left\{n \geq 0: S_{n}=A \text { or } S_{n}=-B\right\} .
$$

- On the homework, you will show that for any $A>0, B>0$,

$$
\mathbb{P}[\tau<\infty]=1
$$

- For $-B \leq k \leq A$, define

$$
f(k):=\mathbb{P}\left[S_{\tau}=A \mid S_{0}=k\right] .
$$

- Question 1: $A=100, B=100$, find $f(0)$.
- Question 2: $A=200, B=100$, find $f(0)$.
- Question 3: $A=200, B=100$, find $\mathbb{E}\left[\tau \mid S_{0}=0\right]$.
- Question 4: " $A=\infty$ ", $B=100$, find (i) $\mathbb{P}\left[\tau<\infty \mid S_{0}=0\right]$ and (ii) $\mathbb{E}\left[\tau \mid S_{0}=0\right]$.

First step analysis

Recall

$$
f(k):=\mathbb{P}\left[S_{\tau}=A \mid S_{0}=k\right] \quad \forall-B \leq k \leq A .
$$

- Clearly $f(A)=1, f(-B)=0$.
- For every $-B<k<A$,

$$
\begin{aligned}
f(k) & =\frac{1}{2} \cdot \mathbb{P}\left[S_{\tau}=A \mid S_{0}=k, X_{1}=1\right]+\frac{1}{2} \cdot \mathbb{P}\left[S_{\tau}=A \mid S_{0}=k, X_{1}=-1\right] \\
& =\frac{1}{2} \cdot f(k+1)+\frac{1}{2} \cdot f(k-1) .
\end{aligned}
$$

- Let $f(-B+1)=x$. Then, the above relation gives $f(-B+2)=2 x$. Similarly,

$$
f(-B+\ell)=\ell x \quad \forall 0 \leq \ell \leq A+B
$$

- Since $f(A)=1$, we must have

$$
x=\frac{1}{A+B}
$$

First step analysis

We have proved that

$$
f(k)=\mathbb{P}\left[S_{\tau}=A \mid S_{0}=k\right]=\frac{k+B}{A+B} \quad \forall-B \leq k \leq A .
$$

- Answer 1: $A=100, B=100, f(0)=1 / 2$.
- Answer 2: $A=200, B=100, f(0)=1 / 3$.
- Another interpretation of this scenario is the following: suppose Alice and Bob bet on the outcomes of fair coin tosses. If the outcome is heads, then Bob pays $\$ 1$ to Alice, otherwise Alice pays $\$ 1$ to Bob. If Alice starts with $\$ A$ and Bob starts with $\$ B$ then the probability that Alice wins everything ('Alice ruins Bob') is

$$
\frac{A}{A+B}
$$

Application: symmetric simple random walk on the circle

Consider the symmetric simple random walk on the circle with $n+1$ points, starting from the point marked 0 .

Image courtesy of user 'mark' on math.stackexchange.com

Application: symmetric simple random walk on the circle

- Similar to the homework exercise, it follows that with probability 1 , the random walk visits all points.
- Therefore, some point other than 0 is the last point visited.
- What is the probability that 1 is the last point visited?

$$
\begin{aligned}
\mathbb{P}[1 \text { is the last point visited }] & =\mathbb{P}[2 \text { is visited before } 1] \\
& =\mathbb{P}\left[S_{\tau_{(n-1,-1)}}=n-1 \mid S_{0}=0\right] \\
& =\frac{1}{n} .
\end{aligned}
$$

- On the homework, you will show that for all $1 \leq k \leq n$,

$$
\mathbb{P}[k \text { is the last point visited }]=\frac{1}{n} .
$$

First step analysis

- Given integers $A>0, B>0$, let

$$
\tau:=\min \left\{n \geq 0: S_{n}=A \text { or } S_{n}=-B\right\} .
$$

- For $-B \leq k \leq A$, define

$$
g(k):=\mathbb{E}\left[\tau \mid S_{0}=k\right] .
$$

- Clearly, $g(-B)=0, g(A)=0$.
- For $-B<k<A$, we have

$$
\begin{aligned}
g(k) & =\frac{1}{2} \mathbb{E}\left[\tau \mid S_{0}=k, X_{1}=1\right]+\frac{1}{2} \mathbb{E}\left[\tau \mid S_{0}=k, X_{1}=-1\right] \\
& =\frac{1}{2}(g(k+1)+1)+\frac{1}{2}(g(k-1)+1) \\
& =\frac{1}{2} g(k+1)+\frac{1}{2} g(k-1)+1 .
\end{aligned}
$$

First step analysis

- Let $(\Delta h)(k):=h(k+1)-h(k)$.
- Then, for all $-B<k<A$

$$
\begin{aligned}
(\Delta(\Delta g))(k-1) & =(\Delta g)(k)-(\Delta g)(k-1) \\
& =g(k+1)-g(k)-g(k)+g(k-1) \\
& =g(k+1)-(g(k+1)+g(k-1)+2)+g(k-1) \\
& =-2
\end{aligned}
$$

- "Second derivative of g is -2 " so $g(k)=-k^{2}+D k+C$.
- Using boundary conditions,

$$
g(k)=-(k-A)(k+B) .
$$

First step analysis

We have proved that

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k+A)(k-B) .
$$

- Answer 3: $A=200, B=100, g(0)=2 \times 10^{4}$.
- Answer 4 (ii): " $A=\infty$ ", $B=100, g(0)=\infty$.
- Formally, let

$$
\begin{aligned}
\tau_{1} & =\min \left\{n \geq 0: S_{n}=-100\right\}, \\
\tau_{2}(\ell) & =\min \left\{n \geq 0: S_{n}=-100 \text { or } S_{n}=\ell\right\} \quad \forall \ell \geq 1 .
\end{aligned}
$$

- Then, for all $\ell \geq 1, \tau_{2}(\ell) \leq \tau_{1}$ so that

$$
100 \ell=\mathbb{E}\left[\tau_{2}(\ell) \mid S_{0}=0\right] \leq \mathbb{E}\left[\tau_{1} \mid S_{0}=0\right],
$$

and now take $\ell \rightarrow \infty$.

First step analysis

- In words, for a symmetric simple random walk starting at 0 , the expected time to hit -100 is infinite! Of course, there is nothing special about -100 here.
- On the other hand, Answer 4(i):

$$
\begin{aligned}
\mathbb{P}\left[S_{n} \text { visits }-100\right] & \geq \mathbb{P}\left[S_{\tau_{2}(\ell)}=-100\right] \\
& =\frac{\ell}{100+\ell} \\
& \rightarrow 1 \text { as } \ell \rightarrow \infty
\end{aligned}
$$

- So, a symmetric simple random walk starting at 0 visits -100 with probability 1 . Again, there is nothing special about -100 here.

