
STATS 217: Introduction to Stochastic Processes I

Lecture 10
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Recurrence and transience

Let (Xn)n≥0 be a DTMC on S .

s ∈ S is a recurrent state if fs = 1.

s ∈ S is a transient state if fs < 1.

By the formula

E[N(s) | X0 = s] =
fs

1− fs
,

we see that

fs is recurrent ⇐⇒ E[N(s) | X0 = s] = ∞.
fs if transient ⇐⇒ E[N(s) | X0 = s] < ∞.
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Accessibility

Recall that for any A ⊂ S , a ∈ S

τA,a = min{n ≥ 1 : Xn ∈ A | X0 = a}.

For a, b ∈ S , we let
fa→b = P[τ{b},a <∞].

For a, b ∈ S , we say that b is accessible from a, denoted by a→ b, if at
least one of the following holds: (i) a = b, (ii) fa→b > 0.

Note that
a→ b ⇐⇒ pna,b > 0 for some n ≥ 0.
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Communication

Let a, b ∈ S , we say that a and b communicate, denoted by a↔ b, if a→ b and
b → a.

Observe that communication is an equivalence relation i.e.,

Reflexive: a↔ a for all a ∈ S .

Symmetric: a↔ b =⇒ b ↔ a for all a, b ∈ S .

Transitive: a↔ b and b ↔ c =⇒ a↔ c for all a, b, c ∈ S .

Therefore, we can partition S into (maximal) communicating classes i.e.

S = S1 ∪ · · · ∪ Sk , such that

S1, . . . ,Sk are disjoint.

a↔ b for all a, b ∈ Si , for all i = 1, . . . , k.

a 6↔ b for all a ∈ Si , b ∈ Sj , i 6= j .
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Class properties

Let S = S1 ∪ · · · ∪ Sk denote the decomposition of S into (maximal)
communicating classes.

We say that a property is a class property if for every i = 1, . . . , k, either all
s ∈ Si have the property or no s ∈ Si have the property.

We will now show that recurrence is a class property.

Note that this just means that if a is recurrent and a↔ b, then b is recurrent.

In fact, we will show something more, namely that

a is recurrent, and a→ b =⇒ b is recurrent, and b → a.
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Accessibility and recurrence

We want to show that

a is recurrent and a→ b =⇒ b is recurrent and b → a.

Why is this true?

Intuitively,

a being recurrent means that a returns to itself with probability 1. a→ b
means that there is a positive probability of going from a to b. If it were the
case that b 6→ a, then once we get to b, we have no way of getting back to a,
contradicting recurrence.

Now, to see the recurrence of b, since we visit a infinitely many times in
expectation and since there is a positive probability of going from a to b and
of going from b to a, we also visit b infinitely many times in expectation.
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Accessibility and recurrence

Formally, we have the inclusion of events

{N(a) <∞ | X0 = a} ⊇ {Xn visits b and never returns to a | X0 = a}.

Taking probabilities, we have

0 = P[N(a) <∞ | X0 = a]

≥ fa→b · (1− fb→a).

Since fa→b > 0 by assumption, we must have fb→a = 1, so in particular, b → a.
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Accessibility and recurrence

Let us now show that b is recurrent.

Since fa→b > 0, fb→a > 0, we must have pma,b > 0 and pm
′

b,a > 0 for some
m,m′ > 0.

Note that for all n ≥ 0

P[Xn+m+m′ = b | X0 = b] ≥ pm
′

b,a · pna,a · pma,b.

Summing this over all n, we have

∞∑
n=0

P[Xn+m+m′=b | X0 = b] ≥ pm
′

b,a · pma,b ·
∞∑
n=0

pn(a, a).

The RHS is infinite since a is recurrent and pma,b > 0, pm
′

b,a > 0, which shows
that the expected number of returns to b is infinite, and hence b is recurrent.
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Decomposition of the state space

Let S = S1 ∪ · · · ∪ Sk be the decomposition of the state space into communicating
classes.

By what we saw, for i = 1, . . . , k , either all states in Si are recurrent or all
states in Si are transient.

We can say a bit more. Since

a is recurrent, and a→ b =⇒ b is recurrent, and b → a,

it follows that
a→ b and b 6→ a =⇒ a is transient.

We say that A ⊆ S is closed if for all a ∈ A and for all b ∈ S \ A, a 6→ b. In
words, once we enter A, we do not exit A.
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Decomposition of the state space

Let S = S ′1 ∪ · · · ∪ S ′k ∪ S1 ∪ . . . S` be a decomposition of the state space
where S ′i are the transient communicating classes Sj are the recurrent
communicating classes.

It must be the case that S1, . . . ,S` are closed.

Indeed, suppose Si is not closed. Then, there must exist some b ∈ S \ Si
such that a→ b. Since Si is a maximal communicating class and b /∈ Si , we
must have b 6→ a. But

a→ b and b 6→ a =⇒ a is transient,

a contradiction.
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Decomposition of the state space

Also, it must be the case that S ′1, . . . ,S
′
k are not closed.

Indeed, suppose that S ′i is closed. Fix a ∈ S ′i and note that

∑
b∈S′

i

E[Nδa(b)] = E

∑
b∈S′

i

Nδa(b)

 =∞.

Therefore, there must exist some b ∈ S ′i such that E[Nδa(b)] =∞ and the
same geometric random variable argument as before shows that fb→b = 1,
which contradicts that b is transient.
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Summary

Let (Xn)n≥0 be a DTMC on a finite state space S . Then,

S = S ′1 ∪ · · · ∪ S ′k ∪ C1 ∪ . . .C`, where

Each S ′i ,Cj is a communicating class.

S ′1, . . . ,S
′
k ,C1, . . . ,C` are disjoint.

S ′1, . . . ,S
′
k are not closed and all states in S ′1 ∪ · · · ∪ S ′k are transient.

Each Ci is closed and recurrent.

S ′1 ∪ · · · ∪ S ′k 6= S .

To see the last point, note that for any starting distribution µ0,

∑
a∈S

E[Nµ0(a)] = E

[∑
a∈S

Nµ0(a)

]
=∞,

so that there must exist some a ∈ S for which E[Nµ0(a)] =∞, and now the
geometric random variable argument shows that fa→a = 1.
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