STATS 217: Introduction to Stochastic Processes I

Lecture 11

From last time

Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on S with transition matrix P.

- $s \in S$ is recurrent if $f_{s \rightarrow s}=1$, where $f_{s \rightarrow s}=\mathbb{P}\left[\tau_{\{s\}, s}<\infty\right]$.
- We saw that s is recurrent if and only if

$$
\mathbb{E}\left[N(s) \mid X_{0}=s\right]=\infty,
$$

where $N(s)$ is the number of visits to s.

From last time

Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on S with transition matrix P.

- $s \in S$ is recurrent if $f_{s \rightarrow s}=1$, where $f_{s \rightarrow s}=\mathbb{P}\left[\tau_{\{s\}, s}<\infty\right]$.
- We saw that s is recurrent if and only if

$$
\mathbb{E}\left[N(s) \mid X_{0}=s\right]=\infty,
$$

where $N(s)$ is the number of visits to s.

- While proving that a recurrent and $a \rightarrow b$ implies $b \rightarrow a$, we used that

$$
\mathbb{P}\left[N(a)=\infty \mid X_{0}=a\right]=1
$$

Note that this is stronger than saying that $\mathbb{E}\left[N(a)=\infty \mid X_{0}=a\right]=\infty$.

From last time

- Why is this stronger statement true? It suffices to show that $\mathbb{P}\left[N(a)<\infty \mid X_{0}=a\right]=0$.

From last time

- Why is this stronger statement true? It suffices to show that $\mathbb{P}\left[N(a)<\infty \mid X_{0}=a\right]=0$.
- By definition, $\{N(a)<\infty\}=\cup_{n \in \mathbb{Z} \geq 0}\{N(a)=n\}$.
- We also know that for any $n \in \mathbb{Z} \geq 0 \sim \sim$

$$
\mathbb{P}\left[N(a)=n \mid X_{0}=a\right]=\sim_{a \rightarrow a}^{n}-\overbrace{\sim a}^{n} \underbrace{n+1}_{a}=0 .
$$

From last time

- Why is this stronger statement true? It suffices to show that $\mathbb{P}\left[N(a)<\infty \mid X_{0}=a\right]=0$.
- By definition, $\{N(a)<\infty\}=\cup_{n \in \mathbb{Z} \geq 0}\{N(a)=n\}$.
- We also know that for any $n \in \mathbb{Z} \geq 0$

$$
\mathbb{P}\left[N(a)=n \mid X_{0}=a\right]=f_{a \rightarrow a}^{n}-f_{a \rightarrow a}^{n+1}=0 .
$$

- Therefore,

$$
\begin{aligned}
\mathbb{P}\left[N(a)<\infty \mid X_{0}=0\right] & =\sum_{n \in \mathbb{Z} \geq 0} \mathbb{P}\left[N(a)=n \mid X_{0}=a\right] \\
& =\sum_{n \in \mathbb{Z} \geq 0} 0 \\
& =0
\end{aligned}
$$

Exit distributions

- In the first lecture, we studied the Gambler's ruin: consider a gambler who bets on the outcome of fair coin tosses. What is the probability that she loses $\$ 100$ before winning $\$ 200$?
- We can study such questions more generally.

Exit distributions

- In the first lecture, we studied the Gambler's ruin: consider a gambler who bets on the outcome of fair coin tosses. What is the probability that she loses $\$ 100$ before winning $\$ 200$?
- We can study such questions more generally.
- For instance, generalizing our argument from Gambler's ruin shows the following.
- Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on a finite state space S. Let $a \neq b \in S$ and let $C=S-\{a, b\}$. Let V_{a} be the first time (including 0) that a is visited and similarly for V_{b}.

$$
\begin{aligned}
& S=[-100,-99, \ldots, 199,200] \\
& a=-100 \\
& b=200
\end{aligned}
$$

Exit distributions

- In the first lecture, we studied the Gambler's ruin: consider a gambler who bets on the outcome of fair coin tosses. What is the probability that she loses $\$ 100$ before winning $\$ 200$?
- We can study such questions more generally.
- For instance, generalizing our argument from Gambler's ruin shows the following.
- Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on a finite state space S. Let $a \neq b \in S$ and let $C=S-\{a, b\}$. Let V_{a} be the first time (including 0) that a is visited and similarly for V_{b}. Suppose that $h(a)=1, h(b)=0$ and for all $x \in C$,

$$
h(x)=\sum_{y \in S} p_{x, y} h(y) .
$$

Exit distributions

- In the first lecture, we studied the Gambler's ruin: consider a gambler who bets on the outcome of fair coin tosses. What is the probability that she loses $\$ 100$ before winning $\$ 200$?
- We can study such questions more generally.
- For instance, generalizing our argument from Gambler's ruin shows the following.
- Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on a finite state space S. Let $a \neq b \in S$ and let $C=S-\{a, b\}$. Let V_{a} be the first time (including 0) that a is visited and similarly for V_{b}. Suppose that $h(a)=1, h(b)=0$ and for all $x \in C$,

$$
\left\{\begin{array}{l}
h(x)=\sum_{y \in S} p_{x, y} h(y) . \quad \text { "first step } \\
\text { analysis" }
\end{array}\right.
$$

If there exists some N such that $\mathbb{P}\left[\min \left\{V_{a}, V_{b}\right\}<N \mid X_{0}=x\right]>0$ for all $x \in C$, then
$\begin{aligned} & \text { heads } 300 \text {.limes, } \\ & \text { then you win" }\end{aligned} \quad h(x)=\mathbb{P}\left[V_{a}<V_{b} \mid X_{0}=x\right]$. $\begin{aligned} & \text { the prob of hitting } \\ & \text { a before b } \\ & \text { stapling at } x .\end{aligned}$

Exit distributions

- Let $T=\min \left\{V_{a}, V_{b}\right\}$.
- Since $\mathbb{P}\left[T<N \mid X_{0}=x\right]>0$ for all $x \in C$, the same argument as Problem 1 of HW1 shows that $\mathbb{P}[T<\infty]=1$.

Exit distributions

- Let $T=\min \left\{V_{a}, V_{b}\right\}$.
- Since $\mathbb{P}\left[T<N \mid X_{0}=x\right]>0$ for all $x \in C$, the same argument as Problem 1 of HW1 shows that $\mathbb{P}[T<\infty]=1$.
- The equation

$$
h(x)=\sum_{y \in S} p_{x, y} h(y) \quad \forall x \in C
$$

can be rewritten as

$$
\begin{aligned}
h(x) & =\mathbb{E}\left[h\left(X_{1}\right) \mid x_{0}=x\right] \quad \forall x \in C . \\
& =\sum_{y}^{\prime} \mathbb{\mathbb { R }}\left(x_{2}=y \mid \gamma_{0}=x\right) h(y) \\
& =\sum_{y}^{\prime} p_{x, y} h(y) .
\end{aligned}
$$

Exit distributions

- Let $T=\min \left\{V_{a}, V_{b}\right\}$.
- Since $\mathbb{P}\left[T<N \mid X_{0}=x\right]>0$ for all $x \in C$, the same argument as Problem 1 of HW1 shows that $\mathbb{P}[T<\infty]=1$.
- The equation

$$
h(x)=\sum_{y \in S} p_{x, y} h(y) \quad \forall x \in C .
$$

can be rewritten as

$$
h(x)=\mathbb{E}\left[h\left(X_{1}\right) \mid X_{0}=x\right] \quad \forall x \in C .
$$

- Iterating this, we have for all $x \in C$,

$$
h\left(x_{1}\right)=\left\{\begin{array}{l}
x_{1} \in\{a, b\} \\
\mathbb{E}\left[h\left(x_{2}\right) \mid x_{1}\right]
\end{array}\right.
$$

$x_{T} \in\{a, b\}$

$$
\begin{aligned}
h(x) & =\mathbb{E}\left[h\left(X_{T}\right) \mid X_{0}=x\right] \\
& =\mathbb{P}\left[X_{T}=a \mid X_{0}=\bar{x}\right]
\end{aligned}=\left\{\begin{array}{c}
\mathbb{E}\left[h\left(x_{T}\right) \mid x_{T}=a, y_{0} \cdot x\right] \\
\mathbb{P}\left[x_{T}=a \mid x_{0}=x\right]
\end{array}\right.
$$

$$
h(a)=1, h(b)=0 \quad=\mathbb{P}\left[V_{a}<V_{b} \mid x_{0}=x\right] . \quad+\quad \text { for } b .
$$

Example

Consider the following crude model of opinion dynamics.

- There is a population of N individuals, each with one of two opinions: A or B.
- Initially, $1 \leq x \leq N-1$ individuals have opinion A and $N-x$ individuals have opinion B.
- At each time step, the individuals update their opinion by sampling without replacement from the current opinions.

Example

Consider the following crude model of opinion dynamics.

- There is a population of N individuals, each with one of two opinions: A or B.
- Initially, $1 \leq x \leq N-1$ individuals have opinion A and $N-x$ individuals have opinion B.
- At each time step, the individuals update their opinion by sampling without replacement from the current opinions.
- This just means that if x people have opinion A today, then at the next time step, the probability that y people have opinion A is

$$
p_{x, y}:=\binom{N}{y}\left(\frac{x}{N}\right)^{y}\left(\frac{N-x}{N}\right)^{N-y} .
$$

Example

Consider the following crude model of opinion dynamics.

- There is a population of N individuals, each with one of two opinions: A or B.
- Initially, $1 \leq x \leq N-1$ individuals have opinion A and $N-x$ individuals have opinion B.
- At each time step, the individuals update their opinion by sampling without replacement from the current opinions.
- This just means that if x people have opinion A today, then at the next time step, the probability that y people have opinion A is

$$
p_{x, y}:=\binom{N}{y}\left(\frac{x}{N}\right)^{y}\left(\frac{N-x}{N}\right)^{N-y}=\mathbb{P}\left[\operatorname{Binom}\left(N, \frac{x}{N}\right)=y\right]
$$

- What is the probability that everyone in the population eventually holds opinion A ?

Example

- Let X_{n} denote the number of people with opinion A at time n.
- Then, X_{n} is a DTMC.
- We are interested in finding $\mathbb{P}\left[V_{N}<V_{0} \mid X_{0}=x\right]$.

Example

- Let X_{n} denote the number of people with opinion A at time n.
- Then, X_{n} is a DTMC.
- We are interested in finding $\mathbb{P}\left[V_{N}<V_{0} \mid X_{0}=x\right]$.
- By the theorem, it suffices to find a function $h(x)$ with $h(N)=1, h(0)=0$ and for all $1 \leq x \leq N-1$,

$$
\begin{gathered}
h(x)=\sum_{y \in S} p_{x, y} h(y) . \\
h(x)=\sum_{1}^{1} \mathbb{P}\left[\operatorname{Binom}\left(N, \frac{x}{N}\right)=y\right] h(y) . \\
h(y)=\frac{y}{N} \quad h(N)=1 \\
h(0)=0
\end{gathered}
$$

Example

- Let X_{n} denote the number of people with opinion A at time n.
- Then, X_{n} is a DTMC.
- We are interested in finding $\mathbb{P}\left[V_{N}<V_{0} \mid X_{0}=x\right]$.
- By the theorem, it suffices to find a function $h(x)$ with $h(N)=1, h(0)=0$ and for all $1 \leq x \leq N-1$,

$$
h(x)=\sum_{y \in S} p_{x, y} h(y)
$$

- Since $p_{x, y}=\mathbb{P}[\operatorname{Binom}(N, x / N)=y]$, you can check easily that $h(x)=x / N$ is a valid choice.

$$
\text { by tho, } h(x)=\mathbb{P}\left[V_{N}<v_{0} \mid x_{0}=x\right]
$$

A more general view

$$
s=\overbrace{s_{1}^{\prime} \cup \ldots s_{k}^{\prime}}^{\text {wansient }} \cup c_{c_{1}^{\prime \prime}} \cup \ldots c_{l} c_{l}\}
$$

- Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on a finite state space $S=\{1, \ldots, N\}$ with transition matrix P.
- Suppose that all the recurrent states of S are absorbing.
- Without loss of generality, this means that there is some $r<N$ such that states $\{1, \ldots, r\}$ are transient, states $\{r+1, \ldots, N\}$ are recurrent, and $P_{x, x}=1$ for all $x>r$.

A more general view

- Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on a finite state space $S=\{1, \ldots, N\}$ with transition matrix P.
- Suppose that all the recurrent states of S are absorbing.
- Without loss of generality, this means that there is some $r<N$ such that states $\{1, \ldots, r\}$ are transient, states $\{r+1, \ldots, N\}$ are recurrent, and $P_{x, x}=1$ for all $x>r$.
- Therefore, the transition matrix P decomposes as
prob. of going from $\quad P=\left[\begin{array}{ll}Q & R \\ \square & T\end{array}\right]$
where Q is an $r \times r$ matrix, R is an $r \times(N-r)$ matrix, and I is the $(N-r) \times(N-r)$ identity matrix.

A more general view

- Let T be the first time that the chain reaches one of the absorbing states. We know that $\mathbb{P}[T<\infty]=1$.
- Our goal is to understand, for all $j>r$,

$$
U_{i, j}=\mathbb{P}\left[X_{T}=j \mid X_{0}=i\right] .
$$

A more general view

- Let T be the first time that the chain reaches one of the absorbing states. We know that $\mathbb{P}[T<\infty]=1$.
- Our goal is to understand, for all $j>r$,

$$
U_{i, j}=\mathbb{P}\left[X_{T}=j \mid X_{0}=i\right] . \quad \begin{aligned}
& \text { absorbing } \\
& \text { states are } \\
& R+1, \ldots, \text { N }
\end{aligned}
$$

- By definition, we must have $U_{j, j}=1$ and $U_{i, j}=0$ for all $i>r, i \neq j$.

$$
\because h(a)=1, h(b)=0 "
$$

A more general view

- Let T be the first time that the chain reaches one of the absorbing states. We know that $\mathbb{P}[T<\infty]=1$.
- Our goal is to understand, for all $j>r$,

$$
U_{i, j}=\mathbb{P}\left[X_{T}=j \mid X_{0}=i\right] .
$$

- By definition, we must have $U_{j, j}=1$ and $U_{i, j}=0$ for all $i>r, i \neq j$.
- On the other hand, for any $i \leq r$, we have by first step analysis that

\[

\]

A more general view

- Let T be the first time that the chain reaches one of the absorbing states. We know that $\mathbb{P}[T<\infty]=1$.
- Our goal is to understand, for all $j>r$,

$$
U_{i, j}=\mathbb{P}\left[X_{T}=j \mid X_{0}=i\right] .
$$

- By definition, we must have $U_{j, j}=1$ and $U_{i, j}=0$ for all $i>r, i \neq j$.
- On the other hand, for any $i \leq r$, we have by first step analysis that

$$
\begin{aligned}
U_{i, j} & =P_{i, j}+\sum_{k \leq r} P_{i, k} U_{k, j} \\
& =R_{i, j}+\sum_{k \leq r} Q_{i, j} U_{k, j},
\end{aligned}
$$

and by the same argument as before, a solution to these equations with the given boundary conditions gives $\mathbb{P}\left[X_{T}=j \mid X_{0}=i\right]$.

Biased Gambler's ruin

- Let us return to the problem of the Gambler's ruin, except now, the bets are biased.
- Concretely, the gambler starts with $\$ x$ and in each round, independently, wins $\$ 1$ with probability p and loses $\$ 1$ with probability $q=1-p$
- She stops playing once she either reaches $\$ N$ or $\$ 0$.

Biased Gambler's ruin

- Let us return to the problem of the Gambler's ruin, except now, the bets are biased.
- Concretely, the gambler starts with $\$ x$ and in each round, independently, wins $\$ 1$ with probability p and loses $\$ 1$ with probability q.
- She stops playing once she either reaches $\$ N$ or $\$ 0$.
- We want to compute

$$
h(x)=\mathbb{P}\left[V_{N}<V_{0} \mid X_{0}=x\right] .
$$

- As before, $h(N)=1, h(0)=0$ and for $1 \leq x \leq N-1$,

$$
h(x)=p h(x+1)+q h(x-1) .
$$

Biased Gambler's ruin

- Let us return to the problem of the Gambler's ruin, except now, the bets are biased.
- Concretely, the gambler starts with $\$ x$ and in each round, independently, wins $\$ 1$ with probability p and loses $\$ 1$ with probability q.
- She stops playing once she either reaches $\$ N$ or $\$ 0$.
- We want to compute

$$
h(x)=\mathbb{P}\left[V_{N}<V_{0} \mid X_{0}=x\right] .
$$

- As before, $h(N)=1, h(0)=0$ and for $1 \leq x \leq N-1$,

$$
p[h(x+1)-h(x)]
$$

$$
h(x)=p h(x+1)+q h(x-1) \Rightarrow=q[h(x)-n(x-1)]
$$

$$
p h(x)+q h(x)
$$

- Check that this is satisfied by

$$
h(x)=\frac{\theta^{x}-1}{\theta^{N}-1}, \quad \theta=\frac{q}{p} .
$$

$\begin{aligned} & \text { A before }-B \\ &=\frac{B}{A 1 B}\end{aligned}$

Biased Gambler's ruin

- As an example, imagine that you are betting $\$ 1$ on each round of roulette, where there are 18 red, 18 black, and 2 green holes.
- In this case $p=18 / 38$.

Biased Gambler's ruin

- As an example, imagine that you are betting $\$ 1$ on each round of roulette, where there are 18 red, 18 black, and 2 green holes.
- In this case $p=18 / 38$.
- So, for instance,

$$
\begin{aligned}
\mathbb{P}\left[V_{100}<V_{50} \mid X_{0}=50\right] & =\frac{(20 / 18)^{50}-1}{(20 / 18)^{100}-1} \\
& =0.005128,
\end{aligned}
$$

which is almost 100 times less likely than when $p=19 / 38$.

