
STATS 217: Introduction to Stochastic Processes I

Lecture 11
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From last time

Let (Xn)n≥0 be a DTMC on S with transition matrix P.

s ∈ S is recurrent if fs→s = 1, where fs→s = P[τ{s},s <∞].

We saw that s is recurrent if and only if

E[N(s) | X0 = s] =∞,

where N(s) is the number of visits to s.

While proving that a recurrent and a→ b implies b → a, we used that

P[N(a) =∞ | X0 = a] = 1.

Note that this is stronger than saying that E[N(a) =∞ | X0 = a] =∞.
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From last time

Why is this stronger statement true? It suffices to show that
P[N(a) <∞|X0 = a] = 0.

By definition, {N(a) <∞} = ∪n∈Z≥0{N(a) = n}.
We also know that for any n ∈ Z≥0

P[N(a) = n | X0 = a] = f na→a − f n+1
a→a = 0.

Therefore,

P[N(a) <∞ | X0 = 0] =
∑

n∈Z≥0

P[N(a) = n | X0 = a]

=
∑

n∈Z≥0

0

= 0.
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Exit distributions

In the first lecture, we studied the Gambler’s ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

We can study such questions more generally.

For instance, generalizing our argument from Gambler’s ruin shows the
following.

Let (Xn)n≥0 be a DTMC on a finite state space S . Let a 6= b ∈ S and let
C = S − {a, b}. Let Va be the first time (including 0) that a is visited and
similarly for Vb. Suppose that h(a) = 1, h(b) = 0 and for all x ∈ C ,

h(x) =
∑
y∈S

px,yh(y).

If there exists some N such that P[min{Va,Vb} < N | X0 = x ] > 0 for all
x ∈ C , then

h(x) = P[Va < Vb | X0 = x ].

Lecture 11 STATS 217 4 / 11



Exit distributions

In the first lecture, we studied the Gambler’s ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

We can study such questions more generally.

For instance, generalizing our argument from Gambler’s ruin shows the
following.

Let (Xn)n≥0 be a DTMC on a finite state space S . Let a 6= b ∈ S and let
C = S − {a, b}. Let Va be the first time (including 0) that a is visited and
similarly for Vb.

Suppose that h(a) = 1, h(b) = 0 and for all x ∈ C ,

h(x) =
∑
y∈S

px,yh(y).

If there exists some N such that P[min{Va,Vb} < N | X0 = x ] > 0 for all
x ∈ C , then

h(x) = P[Va < Vb | X0 = x ].

Lecture 11 STATS 217 4 / 11



Exit distributions

In the first lecture, we studied the Gambler’s ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

We can study such questions more generally.

For instance, generalizing our argument from Gambler’s ruin shows the
following.

Let (Xn)n≥0 be a DTMC on a finite state space S . Let a 6= b ∈ S and let
C = S − {a, b}. Let Va be the first time (including 0) that a is visited and
similarly for Vb. Suppose that h(a) = 1, h(b) = 0 and for all x ∈ C ,

h(x) =
∑
y∈S

px,yh(y).

If there exists some N such that P[min{Va,Vb} < N | X0 = x ] > 0 for all
x ∈ C , then

h(x) = P[Va < Vb | X0 = x ].

Lecture 11 STATS 217 4 / 11



Exit distributions

In the first lecture, we studied the Gambler’s ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

We can study such questions more generally.

For instance, generalizing our argument from Gambler’s ruin shows the
following.

Let (Xn)n≥0 be a DTMC on a finite state space S . Let a 6= b ∈ S and let
C = S − {a, b}. Let Va be the first time (including 0) that a is visited and
similarly for Vb. Suppose that h(a) = 1, h(b) = 0 and for all x ∈ C ,

h(x) =
∑
y∈S

px,yh(y).

If there exists some N such that P[min{Va,Vb} < N | X0 = x ] > 0 for all
x ∈ C , then

h(x) = P[Va < Vb | X0 = x ].

Lecture 11 STATS 217 4 / 11



Exit distributions

Let T = min{Va,Vb}.
Since P[T < N | X0 = x ] > 0 for all x ∈ C , the same argument as Problem 1
of HW1 shows that P[T <∞] = 1.

The equation

h(x) =
∑
y∈S

px,yh(y) ∀x ∈ C .

can be rewritten as

h(x) = E[h(X1) | X0 = x ] ∀x ∈ C .

Iterating this, we have for all x ∈ C ,

h(x) = E[h(XT ) | X0 = x ]

= P[XT = a | X0 = x ]

= P[Va < Vb | X0 = x ].
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Example

Consider the following crude model of opinion dynamics.

There is a population of N individuals, each with one of two opinions: A or B.

Initially, 1 ≤ x ≤ N − 1 individuals have opinion A and N − x individuals
have opinion B.

At each time step, the individuals update their opinion by sampling without
replacement from the current opinions.

This just means that if x people have opinion A today, then at the next time
step, the probability that y people have opinion A is

px,y :=

(
N

y

)( x

N

)y (N − x

N

)N−y

.

What is the probability that everyone in the population eventually holds
opinion A?
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Example

Let Xn denote the number of people with opinion A at time n.

Then, Xn is a DTMC.

We are interested in finding P[VN < V0 | X0 = x ].

By the theorem, it suffices to find a function h(x) with h(N) = 1, h(0) = 0
and for all 1 ≤ x ≤ N − 1,

h(x) =
∑
y∈S

px,yh(y).

Since px,y = P[Binom(N, x/N) = y ], you can check easily that h(x) = x/N
is a valid choice.
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A more general view

Let (Xn)n≥0 be a DTMC on a finite state space S = {1, . . . ,N} with
transition matrix P.

Suppose that all the recurrent states of S are absorbing.

Without loss of generality, this means that there is some r < N such that
states {1, . . . , r} are transient, states {r + 1, . . . ,N} are recurrent, and
Px,x = 1 for all x > r .

Therefore, the transition matrix P decomposes as

P =

[
Q R
0 I

]
where Q is an r × r matrix, R is an r × (N − r) matrix, and I is the
(N − r)× (N − r) identity matrix.
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A more general view

Let T be the first time that the chain reaches one of the absorbing states.
We know that P[T <∞] = 1.

Our goal is to understand, for all j > r ,

Ui,j = P[XT = j | X0 = i ].

By definition, we must have Uj,j = 1 and Ui,j = 0 for all i > r , i 6= j .

On the other hand, for any i ≤ r , we have by first step analysis that

Ui,j = Pi,j +
∑
k≤r

Pi,kUk,j

= Ri,j +
∑
k≤r

Qi,jUk,j ,

and by the same argument as before, a solution to these equations with the
given boundary conditions gives P[XT = j | X0 = i ].
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Biased Gambler’s ruin

Let us return to the problem of the Gambler’s ruin, except now, the bets are
biased.

Concretely, the gambler starts with $x and in each round, independently,
wins $1 with probability p and loses $1 with probability q.

She stops playing once she either reaches $N or $0.

We want to compute

h(x) = P[VN < V0 | X0 = x ].

As before, h(N) = 1, h(0) = 0 and for 1 ≤ x ≤ N − 1,

h(x) = ph(x + 1) + qh(x − 1).

Check that this is satisfied by

h(x) =
θx − 1

θN − 1
, θ =

q

p
.
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Biased Gambler’s ruin

As an example, imagine that you are betting $1 on each round of roulette,
where there are 18 red, 18 black, and 2 green holes.

In this case p = 18/38.

So, for instance,

P[V100 < V50 | X0 = 50] =
(20/18)50 − 1

(20/18)100 − 1

= 0.005128,

which is almost 100 times less likely than when p = 19/38.
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