STATS 217: Introduction to Stochastic Processes | J

Lecture 11
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From last time

Let (Xi)n>0 be a DTMC on S with transition matrix P.
e s c Sisrecurrent if ;s = 1, where f,_,; = P[7{5 s < 00].

@ We saw that s is recurrent if and only if
E[N(s) | Xo = s] = oo,

where N(s) is the number of visits to s.
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From last time

Let (Xi)n>0 be a DTMC on S with transition matrix P.
e s c Sisrecurrent if ;s = 1, where f,_,; = P[7{5 s < 00].

@ We saw that s is recurrent if and only if
E[N(s) | Xo = s] = oo,

where N(s) is the number of visits to s.
@ While proving that a recurrent and a — b implies b — a, we used that

P[N(a) = o0 | Xo = a] = 1.

Note that this is stronger than saying that E[N(a) = co | Xp = a] = co.
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From last time

@ Why is this stronger statement true? It suffices to show that
P[N(a) < 00| Xo = a] = 0.
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From last time

@ Why is this stronger statement true? It suffices to show that
P[N(a) < 00| Xo = a] = 0. PO
e By definition, {N(a) < oo} = U,cz>0{N(a) = n}.
AN
o We also know that for any n € Z=°

P[N(a)=n|Xo=a] =f",,— f"1=0.

a—a a—a
[V, ¥, VAV, V3
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From last time

@ Why is this stronger statement true? It suffices to show that
P[N(a) < 00| Xo = a] = 0.
e By definition, {N(a) < oo} = U,cz>0{N(a) = n}.

@ We also know that for any n € Z=°

P[N(a)=n|Xo=a] =f",,— f"1=0.

a—a a—a

P

@ Therefore, P

P[N(a) < oo | Xo=01= > P[N(a)=n|Xo=a]

nezz=0

:Zo
nez=0

=0.

SIS B T



N
Exit distributions

@ In the first lecture, we studied the Gambler's ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

@ We can study such questions more generally.
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N
Exit distributions

@ In the first lecture, we studied the Gambler's ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

@ We can study such questions more generally.

@ For instance, generalizing our argument from Gambler's ruin shows the
following.

@ Let (X,)n>0 be a DTMC on a finite state space S. Let a # b € S and let
C =S —{a,b}. Let V, be the first time (including 0) that a is visited and

imilarly for V. -

similarly for Vj S - (-1Io0,-4a, __ a4 200]
@ ~ —100
b = 2 00
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N
Exit distributions

@ In the first lecture, we studied the Gambler's ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

@ We can study such questions more generally.

@ For instance, generalizing our argument from Gambler's ruin shows the
following.

@ Let (X,)n>0 be a DTMC on a finite state space S. Let a # b € S and let
C =S —{a,b}. Let V, be the first time (including 0) that a is visited and
similarly for Vj. Suppose that h(a) =1, h(b) = 0 and for all x € C,

h(x) =Y puyhly)-

y€eSs
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N
Exit distributions

@ In the first lecture, we studied the Gambler's ruin: consider a gambler who
bets on the outcome of fair coin tosses. What is the probability that she loses
$100 before winning $200?

@ We can study such questions more generally.

@ For instance, generalizing our argument from Gambler's ruin shows the
following.

@ Let (X,)n>0 be a DTMC on a finite state space S. Let a # b € S and let
C =S —{a,b}. Let V, be the first time (including 0) that a is visited and
similarly for Vj,. Suppose that h( ) =1, h(b) =0and for all x € C,

i h pr,y ‘F\AS]' :-\-Qlo

yesW av\alj s’

If there exists some N such that P[min{V,, V,} < N | Xo = x] > 0 for all

x € C, then

“ neads 200wty h(x) = P[V, < Vp | Xo = x]-
AHnen 'jw\ woun “

the 11%‘-- °(’ hitkey
a Mf.p.e b
.s-l—an.kr\a ok X.
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|
Exit distributions
o Let T =min{V,, V,}.

@ Since P[T < N | Xo = x] > 0 for all x € C, the same argument as Problem 1
of HW1 shows that P[T < 0] = 1.
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N
Exit distributions

o Let T =min{V,, V,}.
@ Since P[T < N | Xo = x] > 0 for all x € C, the same argument as Problem 1
of HW1 shows that P[T < 0] = 1.

@ The equation
h(x) =  peyhly) VxeC.
y€eS
can be rewritten as
h(x) =E[h(X1) | Xo =x] ¥xeC.

2T (g e ) RY)
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N
Exit distributions

o Let T =min{V,, V,}.
@ Since P[T < N | Xo = x] > 0 for all x € C, the same argument as Problem 1
of HW1 shows that P[T < 0] = 1.

@ The equation
h(x) =  peyhly) VxeC.

y€eS

can be rewritten as

h(x) = E[h(X1) | Xo = x] Vx € C.

»\(Xl):‘ Z )(| € i'a,bz
I h(x) 1)

@ lterating this, we have for all x € C,

h(x) = E[A(X7) | Xo = x] =< € (WM 1= e )
)(T eia’bg :]P)[XT:a|Xo:)_<-J R [';T—_a\%aﬂ‘]
h(ﬂ\'-ﬂ /ktb]:o- :]P’[Va<\/b|X0:X]. ¥ +d\,\,.

S 2=} TR— SIS 27 Sy



Example

Consider the following crude model of opinion dynamics.
@ There is a population of N individuals, each with one of two opinions: A or B.

@ Initially, 1 < x < N — 1 individuals have opinion A and N — x individuals
have opinion B.

@ At each time step, the individuals update their opinion by sampling without
replacement from the current opinions.
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Example

Consider the following crude model of opinion dynamics.
@ There is a population of N individuals, each with one of two opinions: A or B.

@ Initially, 1 < x < N — 1 individuals have opinion A and N — x individuals
have opinion B.

@ At each time step, the individuals update their opinion by sampling without
replacement from the current opinions.

@ This just means that if x people have opinion A today, then at the next time
step, the probability that y people have opinion A is

= ()G (%)
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|
Example

Consider the following crude model of opinion dynamics.
@ There is a population of N individuals, each with one of two opinions: A or B.

@ Initially, 1 < x < N — 1 individuals have opinion A and N — x individuals
have opinion B.

@ At each time step, the individuals update their opinion by sampling without
replacement from the current opinions.

@ This just means that if x people have opinion A today, then at the next time
step, the probability that y people have opinion A is

= (1) G () = e ez 8

@ What is the probability that everyone in the population eventually holds
opinion A?
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|
Example

o Let X, denote the number of people with opinion A at time n.
@ Then, X, isa DTMC.
@ We are interested in finding P[Vy < Vo | Xo = x].
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Example

o Let X, denote the number of people with opinion A at time n.

@ Then, X, isa DTMC.

@ We are interested in finding P[Vy < Vo | Xo = x].

@ By the theorem, it suffices to find a function h(x) with h(N) =1, h(0) =0
and forall 1 < x < N -1,

h(x) =Y puyhly)-

YES

N = T 0 [Biom(mz) < Y] hey)

L/\/\/WW
(g)~ ()=
‘,\j) 3,/‘\(\ heol = 0
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Example
o Let X, denote the number of people with opinion A at time n.
@ Then, X, isa DTMC.
@ We are interested in finding P[Vy < Vo | Xo = x].
@ By the theorem, it suffices to find a function h(x) with h(N) =1, h(0) =0
and forall 1 < x < N —1, A e
h(x) = peyh(y).
y€eSs
AN~

Since py, = P[Binom(N, x/N) = y], you can check easily that h(x) = x/N
is a valid choice.

Q“ Hom, Ky = Q[UN<VO ()(017']
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A more general View  onsiant- .4
AN " Teel

S~ 805, UG 0-.. G

o Let (X,)n>0 be a DTMC on a finite state space S = {1,..., N} with
transition matrix P.
@ Suppose that all the recurrent states of S are absorbing.

@ Without loss of generality, this means that there is some r < N such that
states {1,...,r} are transient, states {r + 1,..., N} are recurrent, and
Pyxx =1forall x > r.
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A more general view

o Let (X,)n>0 be a DTMC on a finite state space S = {1,..., N} with
transition matrix P.

@ Suppose that all the recurrent states of S are absorbing.

@ Without loss of generality, this means that there is some r < N such that
states {1,...,r} are transient, states {r + 1,..., N} are recurrent, and
Pyxx =1forall x > r.

@ Therefore, the transition matrix P decomposes as

Im\:./af j“"‘j frow P_L%\ﬂ

WorsvImk = WeaS.

where Q is an r x r matrix, R is an r x (N — r) matrix, and / is the
(N —r) x (N — r) identity matrix.
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A more general view

@ Let T be the first time that the chain reaches one of the absorbing states.
We know that P[T < o0] = 1.

@ Our goal is to understand, for all j > r,

Uiy =PXr = | X =i].
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A more general view

@ Let T be the first time that the chain reaches one of the absorbing states.
We know that P[T < o0] = 1.

@ Our goal is to understand, for all j > r, )
GLsorbin

Uij=PXt =j| X =i]. skates are
ST )

@ By definition, we must have U;; =1and U;; =0 forall i > r, i #j.

\/\/\/\ o
AN 1,\(0_\:\, V\(”:O
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A more general view
Let T be the first time that the chain reaches one of the absorbing states
We know that P[T < o0] = 1.
@ Our goal is to understand, for all j > r,
Uj=PXr=j| X =1

@ By definition, we must have U;j=1and U;j =0forall i > r, i #
@ On the other hand, for any i < r, we have by first step analysis that

Ij IJ+ZPIkUkJ{(x')

g8 rE
O

= k<r —

9/11
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A more general view

@ Let T be the first time that the chain reaches one of the absorbing states.
We know that P[T < o0] = 1.

@ Our goal is to understand, for all j > r,

Uiy =PXr = | X =i].

@ By definition, we must have U;j =1and U;j =0forall i > r, i #j.
@ On the other hand, for any i < r, we have by first step analysis that

Uij = Pij+ Z Pi kU,
k<r

=Ri;+ Z Qi j Uk,

k<r

and by the same argument as before, a solution to these equations with the
given boundary conditions gives P[X7 =/ | Xo = 1].
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Biased Gambler's ruin

@ Let us return to the problem of the Gambler's ruin, except now, the bets are
biased.

o Concretely, the gambler starts with $x and in each round, independently,
wins $1 with probability p and loses $1 with probability gz 1-¢

@ She stops playing once she either reaches $/ or $0.
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N
Biased Gambler's ruin

@ Let us return to the problem of the Gambler's ruin, except now, the bets are
biased.

o Concretely, the gambler starts with $x and in each round, independently,
wins $1 with probability p and loses $1 with probability g.

@ She stops playing once she either reaches $/ or $0.
o We want to compute

h(X) = P[VN < W | Xo = X].
@ As before, h(N) =1, h(0) =0and for 1 <x < N —1,

h(x) = ph(x + 1) + gh(x — 1).
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Biased Gambler's ruin

@ Let us return to the problem of the Gambler's ruin, except now, the bets are
biased.

Concretely, the gambler starts with $x and in each round, independently,
wins $1 with probability p and loses $1 with probability g.

She stops playing once she either reaches $N or $0.

We want to compute

h(X) = P[VN < W | Xo = X].

= = < < - -
As before, h(N) =1, h(0) =0 and for 1 <x < N —1, kG- -y

h(x) = ph(x + 1)+ gh(x —1). = = 4 [lco-noen]

V4 . d
Ph({h“lk(ﬂ W\\,\“:
as
@ Check that this is satisfied by -8 ¢
—
0x -1 q °
R T I

Y]
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N
Biased Gambler's ruin

@ As an example, imagine that you are betting $1 on each round of roulette,
where there are 18 red, 18 black, and 2 green holes.

@ In this case p = 18/38.
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N
Biased Gambler's ruin

@ As an example, imagine that you are betting $1 on each round of roulette,
where there are 18 red, 18 black, and 2 green holes.

@ In this case p = 18/38.

@ So, for instance,

(20/18)%° — 1
(20/18)100 — 1
= 0.005128,

P[VIOO < V50 ‘ XO = 50] =

which is almost 100 times less likely than when p = 19/38.
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