
STATS 217: Introduction to Stochastic Processes I

Lecture 12
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Exit times

Let (Xn)n≥0 be a DTMC on a finite state space S = {1, . . . ,N} with
transition matrix P.

Suppose that all the recurrent states of S are absorbing.

Without loss of generality, this means that there is some r < N such that
states {1, . . . , r} are transient, states {r + 1, . . . ,N} are recurrent, and
Px,x = 1 for all x > r .

Therefore, the transition matrix P decomposes as

P =

[
Q R
0 I

]
where Q is an r × r matrix, R is an r × (N − r) matrix, and I is the
(N − r)× (N − r) identity matrix.
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Exit times

Let T be the first time that the chain reaches one of the absorbing states.

We know that P[T <∞] = 1.

Last time we studied the exit distribution starting from i ∈ S i.e.,

Ui,j = P[XT = j | X0 = i ].

Today, we will study the exit time i.e. the random variable T itself.

We already saw an example in the very first lecture when we discussed the
expected time for a gambler to lose either $B or win $A when betting $1 on
the outcomes of independent, fair coin tosses.
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Exit times

Fix i ∈ {1, . . . , r}. What is P[T > t0 | X0 = i ]?

Equivalently, this is the probability that X1, . . . ,Xt0 ∈ {1, . . . , r} given that
X0 = i .

Using the Markov property, this probability is exactly∑
i1,...,it0∈{1,...,r}

Pi,i1 . . .Pit0−1,it0
.

A more convenient way of writing this is as

P[T > t0 | X0 = i ] =
r∑

j=1

(Qt0)i,j .

Lecture 12 STATS 217 4 / 11



Exit times

What is E[T | X0 = i ]? Call this expectation g(i).

We know that g(r + 1) = · · · = g(N) = 0.

On the other hand, by first step analysis, we have for any 1 ≤ i ≤ r that

g(i) = 1 +
r∑

j=1

Pi,jg(j).

Since for all 1 ≤ i ≤ r ,

g(i) = 1 + E[g(X1) | X0 = i ],

it follows from the same argument as in the last lecture that a solution to the
above system of linear equations with the boundary conditions
g(r + 1) = · · · = g(N) = 0 must satisfy g(i) = E[T | X0 = i ].
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Exit times

Another way of writing the previous result is as follows.

Let ~w = (g(1), . . . , g(r)) ∈ Rr and let ~b = (1, 1, . . . , 1) ∈ Rr . Then,

~w = ~b + Q ~w i.e. (I − Q)~w = ~b.

Therefore,
~w = (I − Q)−1~b,

provided that (I − Q)−1 exists.

Since (I − Q) · (I + Q + Q2 + Q3 + . . . ) = I , it follows that I − Q is
invertible if I + Q + Q2 + . . . converges.

In our case, this convergence indeed holds since

0 ≤ (Qt)i,j ≤ P[T > t | X0 = i ]→ 0 as t →∞.
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Biased Gambler’s ruin

Let us return to the problem of the Gambler’s ruin, except now, the bets are
biased.

Concretely, the gambler starts with $x and in each round, independently,
wins $1 with probability p and loses $1 with probability q.

She stops playing once she either reaches $N or $0.

We want to compute
g(x) = E[T | X0 = x ].

We have, g(N) = g(0) = 0 and for 1 ≤ x ≤ N − 1,

g(x) = 1 + pg(x + 1) + qg(x − 1).

Check that this is satisfied by

h(x) =
x

q − p
− N

q − p
· 1− (q/p)x

1− (q/p)N
.
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Biased Gambler’s ruin

As an example, consider the case when p < q.

Then, as N →∞, we see that h(x)→ x
q−p .

Also, by the formula from last time

lim
N→∞

P[VN < V0 | X0 = x ] = lim
N→∞

1− (q/p)x

1− (q/p)N
= 0.

Intuition: As N →∞, we lose all our money with probability tending to 1.
Moreover, since the expected loss per game is (q − p) and since we start off
with x , the expected number of steps is takes to lose all our money is
x/(q − p).

Lecture 12 STATS 217 8 / 11



Patterns in coin tossing

You are tossing an unbiased coin repeatedly. What is the expected number of
tosses to see the pattern TT? What is the expected number of tosses to see
the pattern HT?

The transition matrix is

P =


HH HT TH TT

HH 1/2 1/2 0 0
HT 0 0 1/2 1/2
TH 1/2 1/2 0 0
TT 0 0 1/2 1/2


In the case when we are waiting for TT , we modify the chain to make TT an
absorbing state. In the case when we are waiting for HT , we modify the
chain to make HT an absorbing state.
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Patterns in coin tossing

Let τTT denote the number of steps until we see TT .

Let ~w = (wHH ,wHT ,wTH) where wHH = E[τTT | X1X2 = HH] and so on.

Then, by our previous discussion,

~w = (I − Q)−1

1
1
1

+

2
2
2

 ,

where

Q =

1/2 1/2 0
0 0 1/2

1/2 1/2 0


Solving this, we get

~w =

8
6
8

 .

Lecture 12 STATS 217 10 / 11



Patterns in coin tossing

Let τTT denote the number of steps until we see TT .

Conditioning on the outcome of the first two tosses and using the law of total
probability,

E[τTT ] =
8 + 6 + 8 + 2

4
= 6.

A similar computation shows that

E[τHT ] = 4.
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