STATS 217: Introduction to Stochastic Processes I

Lecture 12

Exit times

- Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on a finite state space $S=\{1, \ldots, N\}$ with transition matrix P.
- Suppose that all the recurrent states of S are absorbing.
- Without loss of generality, this means that there is some $r<N$ such that states $\{1, \ldots, r\}$ are transient, states $\{r+1, \ldots, N\}$ are recurrent, and $P_{x, x}=1$ for all $x>r$.
- Therefore, the transition matrix P decomposes as

$$
P=\left[\begin{array}{ll}
Q & R \\
0 & I
\end{array}\right]
$$

where Q is an $r \times r$ matrix, R is an $r \times(N-r)$ matrix, and l is the $(N-r) \times(N-r)$ identity matrix.

Exit times

- Let T be the first time that the chain reaches one of the absorbing states.
- We know that $\mathbb{P}[T<\infty]=1$.
- Last time we studied the exit distribution starting from $i \in S$ i.e.,

$$
U_{i, j}=\mathbb{P}\left[X_{T}=j \mid X_{0}=i\right] .
$$

- Today, we will study the exit time i.e. the random variable T itself.
- We already saw an example in the very first lecture when we discussed the expected time for a gambler to lose either $\$ B$ or win $\$ A$ when betting $\$ 1$ on the outcomes of independent, fair coin tosses.

Exit times

- Fix $i \in\{1, \ldots, r\}$. What is $\mathbb{P}\left[T>t_{0} \mid X_{0}=i\right]$?
- Equivalently, this is the probability that $X_{1}, \ldots, X_{t_{0}} \in\{1, \ldots, r\}$ given that $X_{0}=i$.
- Using the Markov property, this probability is exactly

$$
\sum_{, i_{t_{0}} \in\{1, \ldots, r\}} P_{i, i_{1}} \ldots P_{i_{t_{0}-1}, i_{t_{0}}} .
$$

- A more convenient way of writing this is as

$$
\mathbb{P}\left[T>t_{0} \mid X_{0}=i\right]=\sum_{j=1}^{r}\left(Q^{t_{0}}\right)_{i, j}
$$

Exit times

- What is $\mathbb{E}\left[T \mid X_{0}=i\right]$? Call this expectation $g(i)$.
- We know that $g(r+1)=\cdots=g(N)=0$.
- On the other hand, by first step analysis, we have for any $1 \leq i \leq r$ that

$$
g(i)=1+\sum_{j=1}^{r} P_{i, j} g(j) .
$$

- Since for all $1 \leq i \leq r$,

$$
g(i)=1+\mathbb{E}\left[g\left(X_{1}\right) \mid X_{0}=i\right],
$$

it follows from the same argument as in the last lecture that a solution to the above system of linear equations with the boundary conditions $g(r+1)=\cdots=g(N)=0$ must satisfy $g(i)=\mathbb{E}\left[T \mid X_{0}=i\right]$.

Exit times

- Another way of writing the previous result is as follows.
- Let $\vec{w}=(g(1), \ldots, g(r)) \in \mathbb{R}^{r}$ and let $\vec{b}=(1,1, \ldots, 1) \in \mathbb{R}^{r}$. Then,

$$
\vec{w}=\vec{b}+Q \vec{w} \quad \text { i.e. } \quad(I-Q) \vec{w}=\vec{b}
$$

- Therefore,

$$
\vec{w}=(I-Q)^{-1} \vec{b},
$$

provided that $(I-Q)^{-1}$ exists.

- Since $(I-Q) \cdot\left(I+Q+Q^{2}+Q^{3}+\ldots\right)=I$, it follows that $I-Q$ is invertible if $I+Q+Q^{2}+\ldots$ converges.
- In our case, this convergence indeed holds since

$$
0 \leq\left(Q^{t}\right)_{i, j} \leq \mathbb{P}\left[T>t \mid X_{0}=i\right] \rightarrow 0 \text { as } t \rightarrow \infty .
$$

Biased Gambler's ruin

- Let us return to the problem of the Gambler's ruin, except now, the bets are biased.
- Concretely, the gambler starts with $\$ x$ and in each round, independently, wins $\$ 1$ with probability p and loses $\$ 1$ with probability q.
- She stops playing once she either reaches $\$ N$ or $\$ 0$.
- We want to compute

$$
g(x)=\mathbb{E}\left[T \mid X_{0}=x\right] .
$$

- We have, $g(N)=g(0)=0$ and for $1 \leq x \leq N-1$,

$$
g(x)=1+p g(x+1)+q g(x-1) .
$$

- Check that this is satisfied by

$$
h(x)=\frac{x}{q-p}-\frac{N}{q-p} \cdot \frac{1-(q / p)^{x}}{1-(q / p)^{N}} .
$$

Biased Gambler's ruin

- As an example, consider the case when $p<q$.
- Then, as $N \rightarrow \infty$, we see that $h(x) \rightarrow \frac{x}{q-p}$.
- Also, by the formula from last time

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left[V_{N}<V_{0} \mid X_{0}=x\right]=\lim _{N \rightarrow \infty} \frac{1-(q / p)^{x}}{1-(q / p)^{N}}=0
$$

- Intuition: As $N \rightarrow \infty$, we lose all our money with probability tending to 1 . Moreover, since the expected loss per game is $(q-p)$ and since we start off with x, the expected number of steps is takes to lose all our money is $x /(q-p)$.

Patterns in coin tossing

- You are tossing an unbiased coin repeatedly. What is the expected number of tosses to see the pattern TT? What is the expected number of tosses to see the pattern $H T$?
- The transition matrix is

$$
P=\left[\begin{array}{ccccc}
& H H & H T & T H & T T \\
H H & 1 / 2 & 1 / 2 & 0 & 0 \\
H T & 0 & 0 & 1 / 2 & 1 / 2 \\
T H & 1 / 2 & 1 / 2 & 0 & 0 \\
T T & 0 & 0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

- In the case when we are waiting for $T T$, we modify the chain to make $T T$ an absorbing state. In the case when we are waiting for $H T$, we modify the chain to make $H T$ an absorbing state.

Patterns in coin tossing

- Let $\tau_{T T}$ denote the number of steps until we see $T T$.
- Let $\vec{w}=\left(w_{H H}, w_{H T}, w_{T H}\right)$ where $w_{H H}=\mathbb{E}\left[\tau_{T T} \mid X_{1} X_{2}=H H\right]$ and so on.
- Then, by our previous discussion,

$$
\vec{w}=(I-Q)^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right),
$$

where

$$
Q=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

- Solving this, we get

$$
\vec{w}=\left(\begin{array}{l}
8 \\
6 \\
8
\end{array}\right) .
$$

Patterns in coin tossing

- Let $\tau_{T T}$ denote the number of steps until we see $T T$.
- Conditioning on the outcome of the first two tosses and using the law of total probability,

$$
\mathbb{E}\left[\tau_{T T}\right]=\frac{8+6+8+2}{4}=6 .
$$

- A similar computation shows that

$$
\mathbb{E}\left[\tau_{H T}\right]=4
$$

