STATS 217: Introduction to Stochastic Processes I

Lecture 13

Evolution of distributions

- Consider a DTMC $\left(X_{n}\right)_{n \geq 0}$ on S with transition matrix P.
- Suppose we start the chain from a random initial state distributed according to λ. We will use the notation $X_{0} \sim \lambda$. This just means that

some prov.

$$
\mathbb{P}\left[X_{0}=i\right]=\lambda_{i} \quad \forall i \in S
$$

dis. on S

Evolution of distributions

- Consider a DTMC $\left(X_{n}\right)_{n \geq 0}$ on S with transition matrix P.
- Suppose we start the chain from a random initial state distributed according to λ. We will use the notation $X_{0} \sim \lambda$. This just means that

$$
\mathbb{P}\left[X_{0}=i\right]=\lambda_{i} \quad \forall i \in S
$$

- What is the distribution of X_{1} ?
- More generally, what is the distribution of X_{n} ?

Evolution of distributions

$$
\text { Recall: } x_{0} \sim \lambda
$$

For any $j \in S$, we have

$$
\mathbb{P}\left[X_{n}=j\right]=\sum_{i \in S} \mathbb{P}\left[X_{0}=i \wedge X_{n}=j\right]
$$

Evolution of distributions

For any $j \in S$, we have

$$
\begin{aligned}
\mathbb{P}\left[X_{n}=j\right] & =\sum_{i \in S} \mathbb{P}\left[X_{0}=i \wedge X_{n}=j\right] \\
& =\sum_{i \in S} \mathbb{P}\left[X_{n}=j \mid X_{0}=i\right] \mathbb{P}\left[X_{0}=i\right] \\
& =\sum_{i \in S} \lambda_{i} \cdot p_{i j}^{n}
\end{aligned}
$$

Evolution of distributions

For any $j \in S$, we have

$$
\begin{aligned}
& \mathbb{P}\left[X_{n}=j\right]=\sum_{i \in S} \mathbb{P}\left[X_{0}=i \wedge X_{n}=j\right] \\
& =\sum_{i \in S} \mathbb{P}\left[X_{n}=j \mid X_{0}=i\right] \mathbb{P}\left[X_{0}=i\right] \\
& =\sum_{i \in S} \lambda_{i} \cdot p_{i j}^{n} \\
& =\sum_{i \in S} \lambda_{i} \cdot\left(P^{n}\right)_{i j} \\
& \left(\begin{array}{lll}
\lambda_{1} & \ldots & \lambda_{s}
\end{array}\right)\left(\begin{array}{ccc}
\hat{p}_{11}^{n} & \ldots & \rho_{1 s}^{n} \\
\vdots & & \\
p_{s 1}^{n} & \ldots & p_{s s}^{n}
\end{array}\right) \\
& =\left(\lambda I^{n}\right)_{j} \\
& \text { sanity check: } \lambda=\delta_{i} \longrightarrow\left(\delta_{i} \underline{P}^{n}\right)_{j}: \underline{P}^{n}{ }_{i j}
\end{aligned}
$$

Evolution of distributions

For any $j \in S$, we have

$$
\begin{aligned}
\mathbb{P}\left[X_{n}=j\right] & =\sum_{i \in S} \mathbb{P}\left[X_{0}=i \wedge X_{n}=j\right] \\
& =\sum_{i \in S} \mathbb{P}\left[X_{n}=j \mid X_{0}=i\right] \mathbb{P}\left[X_{0}=i\right] \\
& =\sum_{i \in S} \lambda_{i} \cdot p_{i j}^{n} \\
& =\sum_{i \in S} \lambda_{i} \cdot\left(P^{n}\right)_{i j} \\
& =\left(\lambda P^{n}\right)_{j} .
\end{aligned}
$$

Stationary distributions

- So, if $X_{0} \sim \lambda$, then $X_{n} \sim \lambda P^{n}$.

Stationary distributions

- So, if $X_{0} \sim \lambda$, then $X_{n} \sim \lambda P^{n}$.
- A stationary distribution for P is a probability distribution π on S satisfying

$$
\pi P=\pi .
$$

Stationary distributions

- So, if $X_{0} \sim \lambda$, then $X_{n} \sim \lambda P^{n}$.
- A stationary distribution for P is a probability distribution π on S satisfying
$\pi P=\pi$.
this is a
- Therefore, if π is a stationary distribution for P, then

$$
X_{0} \sim \pi \Longrightarrow X_{n} \sim \pi \quad \forall n \geq 1
$$

Existence and uniqueness

- A Markov chain $\left(X_{n}\right)_{n \geq 0}$ on S with transition matrix P is said to be irreducible if all the states for a single communicating class.
- Recall that this means that for all $i, j \in S$, there exists some t (possibly depending on i and j) such that $\left(P^{t}\right)_{i, j}>0$.
- Recall also that since S is finite, this means that all states in S are recurrent.

Existence and uniqueness

- A Markov chain $\left(X_{n}\right)_{n \geq 0}$ on S with transition matrix P is said to be irreducible if all the states for a single communicating class.
- Recall that this means that for all $i, j \in S$, there exists some t (possibly depending on i and j) such that $\left(P^{t}\right)_{i, j}>0$.
- Recall also that since S is finite, this means that all states in S are recurrent.
- Next time: Let P be the transition matrix of an irreducible Markov chain. Then, there exists a unique probability distribution π satisfying $\pi P=\pi$.
"Perron-frobenius thm"

Example

Two state chain: $S=\{0,1\}$ and for $p, q \in \underset{(0,1]}{ }$,

$$
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q .
\end{array}\right]
$$

- Since $p, q>0$, the chain is irreducible.
- By the theorem, there is a unique stationary distribution.

$$
\begin{aligned}
& \text { * } \quad\left(\pi_{1} \pi_{2}\right)\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)=\left(\begin{array}{ll}
\pi_{1} & \pi_{2}
\end{array}\right) \\
& \text { * set. } \pi_{1}+\pi_{2}=1 \text {. } \\
& \pi_{1}(1-p)+\pi_{2} q=\pi_{1} \\
& \Rightarrow \pi_{2} q=\pi_{1} p \\
& \text { subshivote ere } \pi_{1}=\frac{q}{p+q}, \pi_{2}=\frac{p}{p+q}
\end{aligned}
$$

Example

Two state chain: $S=\{0,1\}$ and for $p, q \in(0,1]$,

$$
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q .
\end{array}\right]
$$

- Since $p, q>0$, the chain is irreducible.
- By the theorem, there is a unique stationary distribution.
- By solving $\pi P=\pi$ and using that π is a probability distribution, we get (check!) the solution

$$
\pi=\left(\frac{q}{p+q}, \frac{p}{p+q}\right) .
$$

Doubly-stochastic Markov chains

- Consider a DTMC on S with transition matrix P.
- We know that entries of each row of the transition matrix P sum to 1 .
- Suppose also that the columns of P sum to 1 . Then, P is said to be a doubly-stochastic transition matrix.

Doubly-stochastic Markov chains

- Consider a DTMC on S with transition matrix P.
- We know that entries of each row of the transition matrix P sum to 1 .
- Suppose also that the columns of P sum to 1 . Then, P is said to be a doubly-stochastic transition matrix.
- For instance, last time, in our study of waiting times for patterns in coin tossing, we encountered the doubly-stochastic transition matrix

$$
P=\left[\begin{array}{ccccc}
& H H & H T & T H & T T \\
H H & 1 / 2 & 1 / 2 & 0 & 0 \\
H T & 0 & 0 & 1 / 2 & 1 / 2 \\
T H & 1 / 2 & 1 / 2 & 0 & 0 \\
T T & 0 & 0 & 1 / 2 & 1 / 2
\end{array}\right] .
$$

Doubly-stochastic Markov chains

- Consider a DTMC on S with transition matrix P.
- We know that entries of each row of the transition matrix P sum to 1 .
- Suppose also that the columns of P sum to 1 . Then, P is said to be a doubly-stochastic transition matrix.
- For instance, last time, in our study of waiting times for patterns in coin tossing, we encountered the doubly-stochastic transition matrix
$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \quad P=\left[\begin{array}{ccccc} & H H & H T & T H & T T \\ H H & 1 / 2 & 1 / 2 & 0 & 0 \\ H T & 0 & 0 & 1 / 2 & 1 / 2 \\ T H & 1 / 2 & 1 / 2 & 0 & 0 \\ T T & 0 & 0 & 1 / 2 & 1 / 2\end{array}\right]$.
- Problem 1, Homework 4: Let P be a doubly-stochastic transition matrix on the state space S. Then, the uniform distribution on S is a stationary distribution.

Detailed balance conditions

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- We say that μ satisfies the detailed balance conditions with respect to P if

$$
\begin{aligned}
& \mu_{i} P_{i j}=\mu_{j} P_{j i} \quad \forall i, j \in S . \\
& \left(\mu_{1}, \ldots, \mu_{n}\right)
\end{aligned}
$$

Detailed balance conditions

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- We say that μ satisfies the detailed balance conditions with respect to P if

$$
\mu_{i} P_{i j}=\mu_{j} P_{j i} \quad \forall i, j \in S .
$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.

Detailed balance conditions

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- We say that μ satisfies the detailed balance conditions with respect to P if

$$
\mu_{i} P_{i j}=\mu_{j} P_{j i} \quad \forall i, j \in S .
$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.

- Indeed, for all $i \in S$,

$$
\begin{array}{r}
(\mu P)_{i}=\sum_{j \in S} \mu_{j} P_{j i}=\sum_{j \in S} \mu_{i} P_{i j}=\mu_{i}\left(\sum_{j \in S_{11}} \underline{P}_{i j}\right) \\
\mu_{i} P_{i j}
\end{array}
$$

Detailed balance conditions

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- We say that μ satisfies the detailed balance conditions with respect to P if

$$
\mu_{i} P_{i j}=\mu_{j} P_{j i} \quad \forall i, j \in S .
$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.
- Indeed, for all $i \in S$,

$$
(\mu P)_{i}=\sum_{j \in S} \mu_{j} P_{j i}=\sum_{j \in S} \mu_{i} P_{i j}
$$

Detailed balance conditions

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- We say that μ satisfies the detailed balance conditions with respect to P if

$$
\mu_{i} P_{i j}=\mu_{j} P_{j i} \quad \forall i, j \in S .
$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.
- Indeed, for all $i \in S$,

$$
(\mu P)_{i}=\sum_{j \in S} \mu_{j} P_{j i}=\sum_{j \in S} \mu_{i} P_{i j}=\mu_{i} \sum_{j \in S} P_{i j}
$$

Detailed balance conditions

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- We say that μ satisfies the detailed balance conditions with respect to P if

$$
\begin{aligned}
& \mu_{i} P_{i j}=\mu_{j} P_{j i} \quad \forall i, j \in S . \quad \text { note }: \mu_{i} \text { is } \\
& \Rightarrow I \text { in form symmenic }
\end{aligned}
$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.
- Indeed, for all $i \in S$,

$$
\begin{gathered}
(\mu P)_{i}=\sum_{j \in S} \mu_{j} P_{j i}=\sum_{j \in S} \mu_{i} P_{i j}=\mu_{i} \sum_{j \in S} P_{i j}=\mu_{i} \\
\text { non- example : }
\end{gathered}
$$

Detailed balance conditions ($D B C$)
if π satisfies $D B C$ writ P, also say that D is "Reversible".

- If π satisfies the detailed balance conditions with respect to P and $X_{0} \sim \pi$, then

$$
\left\{\begin{array}{c}
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right]=\pi_{x_{0}} P_{x_{0}, x_{1}} \ldots P_{x_{n-1}, x_{n}} \\
11 \\
\mathbb{P}\left[x_{0}=x_{n}, \ldots, x_{n}=x_{0}\right]
\end{array}\right.
$$

Detailed balance conditions

- If π satisfies the detailed balance conditions with respect to P and $X_{0} \sim \pi$, then

$$
\pi_{x_{0}} P_{x_{0} x_{1}}=\pi x_{1} P_{x_{1} x_{0}}
$$

$$
\begin{aligned}
& \mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right]=\underbrace{}_{x_{x_{0}} P_{x_{0}, x_{1}} \ldots P_{x_{n-1}, x_{n}}} \\
& =\underbrace{\widetilde{P}_{x_{1}, x_{0}}}_{{ }_{11}} \underbrace{\pi_{x_{1}} P_{x_{1}, x_{2}}} \ldots P_{x_{n-1}, x_{n}} \\
& \pi_{1} x_{2} P_{x_{2}, x_{1}}
\end{aligned}
$$

Detailed balance conditions

- If π satisfies the detailed balance conditions with respect to P and $X_{0} \sim \pi$, then

$$
\begin{aligned}
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] & =\pi_{x_{0}} P_{x_{0}, x_{1}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} \cdot \pi_{x_{1}} P_{x_{1}, x_{2}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} P_{x_{2}, x_{1}} \cdot \pi_{x_{2}} P_{x_{2}, x_{3}} \ldots P_{x_{n-1}, x_{n}}
\end{aligned}
$$

Detailed balance conditions

- If π satisfies the detailed balance conditions with respect to P and $X_{0} \sim \pi$, then

$$
\begin{aligned}
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] & =\pi_{x_{0}} P_{x_{0}, x_{1}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} \pi_{x_{1}} P_{x_{1}, x_{2}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} P_{x_{2}, x_{1}} \cdot \pi_{x_{2}} P_{x_{2}, x_{3}} \ldots P_{x_{n-1}, x_{n}} \\
& =\ldots \\
& =\pi_{x_{n}} P_{x_{n}, x_{n}-1} \ldots P_{x_{1}, x_{0}}
\end{aligned}
$$

Detailed balance conditions

- If π satisfies the detailed balance conditions with respect to P and $X_{0} \sim \pi$, then

$$
\begin{aligned}
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] & =\pi_{x_{0}} P_{x_{0}, x_{1}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} \cdot \pi_{x_{1}} P_{x_{1}, x_{2}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} P_{x_{2}, x_{1}} \cdot \pi_{x_{2}} P_{x_{2}, x_{3}} \ldots P_{x_{n-1}, x_{n}} \\
& =\ldots \\
& =\pi_{x_{n}} P_{x_{n}, x_{n}-1} \ldots P_{x_{1}, x_{0}} \\
& =\mathbb{P}\left[X_{0}=x_{n}, \ldots, X_{n}=x_{0}\right] .
\end{aligned}
$$

- For this reason, such chains are also called reversible.

$$
\begin{aligned}
& \text { if } x_{0} \sim \pi \\
& \quad\left(x_{0}, \ldots, x_{n}\right) \sim\left(x_{n}, \ldots, x_{0}\right) .
\end{aligned}
$$

Detailed balance conditions

- If π satisfies the detailed balance conditions with respect to P and $X_{0} \sim \pi$, then

$$
\begin{aligned}
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] & =\pi_{x_{0}} P_{x_{0}, x_{1}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} \cdot \pi_{x_{1}} P_{x_{1}, x_{2}} \ldots P_{x_{n-1}, x_{n}} \\
& =P_{x_{1}, x_{0}} P_{x_{2}, x_{1}} \cdot \pi_{x_{2}} P_{x_{2}, x_{3}} \ldots P_{x_{n-1}, x_{n}} \\
& =\ldots \\
& =\pi_{x_{n}} P_{x_{n}, x_{n}-1} \ldots P_{x_{1}, x_{0}} \\
& =\mathbb{P}\left[X_{0}=x_{n}, \ldots, X_{n}=x_{0}\right] .
\end{aligned}
$$

- For this reason, such chains are also called reversible.
- In many interesting examples, the detailed balance conditions provide an efficient way of finding the stationary distribution.

Example: Random walk on a graph

- $G=(V, E)$ is a graph, where V is the set of vertices and E is the set of edges.
- For vertices $u \neq v \in V$, we say that $u \sim v$ if and only if there is an edge between u and v.
- For a vertex $u \in V, \widetilde{\operatorname{deg}}(u)$ denotes the degree of u i.e. the number of vertices it is connected to.

$$
\sum_{u \in V} \operatorname{deg}(u)=2|E|
$$

Example: Random walk on a graph

- $G=(V, E)$ is a graph, where V is the set of vertices and E is the set of edges.
- For vertices $u \neq v \in V$, we say that $u \sim v$ if and only if there is an edge between u and v.
- For a vertex $u \in V, \operatorname{deg}(u)$ denotes the degree of u i.e. the number of vertices it is connected to.
- Note that $\sum_{u \in V} \operatorname{deg}(u)=2|E|$. "handshaking lemma".

Example: Random walk on a graph

- $G=(V, E)$ is a graph, where V is the set of vertices and E is the set of edges.
- For vertices $u \neq v \in V$, we say that $u \sim v$ if and only if there is an edge between u and v.
- For a vertex $u \in V, \operatorname{deg}(u)$ denotes the degree of u i.e. the number of vertices it is connected to.
- Note that $\sum_{u \in V} \operatorname{deg}(u)=2|E|$.
- Recall that the transition matrix of the random walk is given by

$$
P_{u, v}= \begin{cases}\frac{1}{\operatorname{deg}(u)} & \text { if } v \sim u \\ 0 & \text { otherwise }\end{cases}
$$

Example: Random walk on a graph

- Consider the distribution π where $\pi_{u}=\operatorname{deg}(u) / 2|E|$.
- Then, π is a probability distribution.

Example: Random walk on a graph

- Consider the distribution π where $\pi_{u}=\operatorname{deg}(u) / 2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.
need to check: $\pi_{u} P_{u v}=\pi_{v}$ Pun $\forall u, v$.
(1) case 1: $u \nsim v$: both sides are 0
(2) case 2: $u \sim v$.

$$
\begin{aligned}
& \pi_{u} \underbrace{P}_{u v}=\frac{\operatorname{deg}(v)}{2|E|} \frac{1}{\operatorname{deg}(u)} \\
& -\operatorname{deg}^{1}(u) \\
& \pi_{v} P_{v u}
\end{aligned}
$$

Example: Random walk on a graph

- Consider the distribution π where $\pi_{u}=\operatorname{deg}(u) / 2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.
- There are two cases. If $u \nsim v$, then the condition is clearly satisfied since $P_{u v}=P_{v u}=0$.

Example: Random walk on a graph

- Consider the distribution π where $\pi_{u}=\operatorname{deg}(u) / 2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.
- There are two cases. If $u \nsim v$, then the condition is clearly satisfied since $P_{u v}=P_{v u}=0$.
- If $u \sim v$, then

$$
\pi_{u} P_{u v}=\frac{\operatorname{deg}(u)}{2|E|} \cdot \frac{1}{\operatorname{deg}(u)}=\frac{1}{2|E|}=\pi_{v} P_{v u} .
$$

Example: Random walk on a graph

- Consider the distribution π where $\pi_{u}=\operatorname{deg}(u) / 2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.
- There are two cases. If $u \nsim v$, then the condition is clearly satisfied since $P_{u v}=P_{v u}=0$.
- If $u \sim v$, then

$$
\pi_{u} P_{u v}=\frac{\operatorname{deg}(u)}{2|E|} \cdot \frac{1}{\operatorname{deg}(u)}=\frac{1}{2|E|}=\pi_{v} P_{v u} .
$$

- Therefore, π is a stationary distribution for \bar{P}. Note that P is irreducible if and only if the graph G is connected i.e., there is a path from any vertex to any other vertex, in which case, π is the unique stationary distribution.

Example: The Ehrenfest urn

The Ehrenfest urn. n balls are distributed among two urns, urn A and urn B. At each time, we select a ball uniformly at random and move it from its current urn to the other urn.

Example: The Ehrenfest urn

The Ehrenfest urn. n balls are distributed among two urns, urn A and urn B. At each time, we select a ball uniformly at random and move it from its current urn to the other urn.

- Let X_{t} denote the number of balls in urn A at time t. Then, $\left(X_{t}\right)_{t \geq 0}$ is a DTMC on $\{1, \ldots, n\}$ with transition matrix P given by

$$
P_{j k}= \begin{cases}j / n & \text { if } k=j-1 \\ (n-j) / n & \text { if } k=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

Example: The Ehrenfest urn

The Ehrenfest urn. n balls are distributed among two urns, urn A and urn B. At each time, we select a ball uniformly at random and move it from its current urn to the other urn.

- Let X_{t} denote the number of balls in urn A at time t. Then, $\left(X_{t}\right)_{t \geq 0}$ is a DTMC on $\{1, \ldots, n\}$ with transition matrix P given by

$$
P_{j k}= \begin{cases}j / n & \text { if } k=j-1 \\ (n-j) / n & \text { if } k=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

- Note that P is clearly irreducible.

$$
\left\{\begin{array}{c}
\text { by the the, } y \text { unique } \\
\text { stationary } \\
\text { dis. }
\end{array}\right\}
$$

Example: The Ehrenfest urn

- Let π be the distribution on $\{0, \ldots, n\}$ given by

$$
\pi_{x}=2^{-n} \cdot\binom{n}{x}
$$

- By the binomial theorem, π is a probability distribution.

Example: The Ehrenfest urn
intuition: consider the random walk on $\{0,1\}^{n}$

- n neighbors, move to
- Let π be the distribution on $\{0, \ldots, n\}$ given by one of them uniformly

$$
\pi_{x}=2^{-n} \cdot\binom{n}{x}
$$

- By the binomial theorem, π is a probability distribution.
- Exercise: check that π satisfies the detailed balance condition with respect to P.
- Hence, π is the unique stationary distribution for P.

$$
\begin{array}{cc}
\pi_{x} P_{x, x+1} & \pi_{x+1} P_{x+1, v} \\
2^{-n}\binom{n}{x} \frac{n-x}{n} & 2^{-n}\binom{n}{x+1} \frac{x+1}{n}
\end{array}
$$

ex: think about the $\#$ of 1 s at the current.

