
STATS 217: Introduction to Stochastic Processes I

Lecture 14
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Existence and uniqueness of stationary distributions

The goal for today is to prove the following theorem from last time: let P be
the transition matrix of an irreducible Markov chain on the state space S .
Then, there exists a unique probability distribution π such that πP = π.

First, we show uniqueness. Suppose that π and µ are probability distributions
such that

πP = π, µP = µ.

We will show that π = µ.

Let x∗ denote the state which minimizes the ratio π(x)/µ(x). Then, for all
y ∈ S , we have

π(y)

µ(y)
≥ π(x∗)

µ(x∗)
=: α.
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Uniqueness of the stationary distribution

Since π and µ are stationary distributions, we have for any t ≥ 1 that

π(x∗) =
∑
y∈S

π(y)P t
y ,x∗

≥
∑
y∈S

αµ(y)P t
y ,x∗

≥ α
∑
y∈S

µ(y)P t
y ,x∗

= αµ(x∗) = π(x∗).

For this to hold, it must be the case that π(y) = αµ(y) for every y such that
P t
y ,x∗ > 0.
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Uniqueness of the stationary distribution

Since P is irreducible, for every y ∈ S , there exists some t such that
P t
y ,x∗ > 0.

Therefore, for all y ∈ S ,
π(y) = αµ(y).

But since both π and µ are probability distributions,

1 =
∑
y∈S

π(y) = α
∑
y∈S

µ(y) = α,

so that α = 1.
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Existence of stationary distributions

For x , y ∈ S , we define

τx→y = min{n ≥ 1 : Xn = y},

where (Xn)n≥0 is a DTMC on S with transition matrix P starting from
X0 = x .

Since P is irreducible, there exists some r > 0 such that for any a, b ∈ S ,
there exists some j ≤ r with P j

a,b > 0.

Then, by the geometric random variable argument we’ve seen many times,

E[τx→y | X0 = x ] <∞ ∀x , y ∈ S .
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Existence of stationary distributions

We will explicitly construct of the stationary distribution.

The idea is the following: imagine starting the chain at some z ∈ S , and
breaking up the time into intervals based on returns to z . At each return to
z , the chain starts afresh.

Therefore, if we look at the expected fraction of time the chain spends in a
state y between successive returns to z , then this should coincide with the
long-term fraction of time spent by the chain in the state y .
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Existence of stationary distributions

This motivates the following definition.
Fix z ∈ S and let (Xn)n≥0 be a DTMC with transition matrix P and X0 = z .
Define, for all y ∈ S ,

π̃(y) = E[number of visits to y before returning to z ]

=
∞∑
t=0

P[Xt = y , τz→z > t | X0 = z ].

In particular, π̃(z) = 1.
Also, ∑

y∈S

π̃(y) =
∑
y∈S

∞∑
t=0

P[Xt = y , τz→z > t | X0 = z ]

=
∞∑
t=0

P[τz→z > t | X0 = z ]

=
∞∑
t=1

P[τz→z ≥ t | X0 = z ] = E[τz→z ].
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Existence of stationary distributions

Since E[τz→z ] <∞, it follows that

π(y) :=
π̃(y)

E[τz→z ]

is a probability distribution on S .

We will show that this is a stationary distribution for P. It suffices to show
that

π̃P = π̃.
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Existence of stationary distributions

We will check this directly. Note that∑
x∈S

π̃(x)Px,y =
∑
x∈S

∞∑
t=0

P[Xt = x , τz→z > t | X0 = z] · Px,y .

Note that the event {τz→z > t} is determined by X0, . . . ,Xt . Therefore,

P[Xt = x ,Xt+1 = y , τz→z > t | X0 = z] = P[Xt = x , τz→z > t | X0 = z]

· P[Xt+1 = y | Xt = x , τz→z > t,X0 = z]

= P[Xt = x , τz→z > t | X0 = z] · Px,y .

Therefore, we can rewrite∑
x∈S

π̃(x)Px,y =
∑
x∈S

∞∑
t=0

P[Xt = x ,Xt+1 = y , τz→z > t | X0 = z]

=
∞∑
t=0

P[Xt+1 = y , τz→z > t | X0 = z]
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Existence of stationary distributions

Continuing this, we have

∑
x∈S

π̃(x)Px,y =
∞∑
t=0

P[Xt+1 = y , τz→z > t | X0 = z]

=
∞∑
t=0

P[Xt+1 = y , τz→z ≥ t + 1 | X0 = z]

=
∞∑
t=1

P[Xt = y , τz→z ≥ t | X0 = z]

=
∞∑
t=1

P[Xt = y , τz→z > t | X0 = z] +
∞∑
t=1

P[Xt = y , τz→z = t | X0 = z]

On the other hand

π̃(y) =
∞∑
t=0

P[Xt = y , τz→z > t | X0 = z].
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Existence of stationary distributions

Therefore,∑
x∈S

π̃(x)Px,y − π̃(y) =
( ∞∑

t=1

P[Xt = y , τz→z = t | X0 = z]

)
− P[X0 = y , τz→z > 0 | X0 = z]

= 1[z = y ]− P[X0 = y | X0 = z]

= 1[z = y ]− 1[z = y ]

= 0.

This shows that π̃/E[τz→z ] is a stationary distribution, and by uniqueness,
this is the only stationary distribution.

In particular, for an irreducible Markov chain P on a finite state space S , the
unique stationary distribution π is given by

π(z) =
1

E[τz→z ]
∀z ∈ S
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