STATS 217: Introduction to Stochastic Processes I

Lecture 15

Period of a state

- Let P be the transition matrix of a DTMC on S.
- For a state $x \in S$, let

$$
\mathcal{T}(x):=\left\{t \geq 1: P_{x, x}^{t}>0\right\}
$$

denote the set of times when it is possible for the chain to return to its starting position x.

- The period of $x \in S$ is defined to be the greatest common divisor (gcd) of $\mathcal{T}(x)$.

Example

Two-state Markov chain with the transition matrix

$$
P=\left[\begin{array}{lll}
& A & B \\
A & 0 & 1 \\
B & 1 & 0
\end{array}\right]
$$

- $\mathcal{T}(A)=\{2,4,6,8, \ldots\}$ and $\mathcal{T}(B)=\{2,4,6,8, \ldots\}$.
- Hence, $\operatorname{gcd}(\mathcal{T}(A))=2=\operatorname{gcd}(\mathcal{T}(B))$.

Periodicity is a class property

- In the previous example, the chain is irreducible and both states have the same period.
- This is true in general i.e. if P is irreducible, then $\operatorname{gcd}(\mathcal{T}(x))=\operatorname{gcd}(\mathcal{T}(y))$ for all $x, y \in S$.
- To see this, fix $x, y \in S$. By irreducibility, we can find $r, \ell \geq 0$ such that $P_{x, y}^{r}>0$ and $P_{y, x}^{\ell}>0$.
- We will show that $\operatorname{gcd}(\mathcal{T}(x))=\operatorname{gcd}(\mathcal{T}(y))$.
- For this, note that if $t \in \mathcal{T}(y)$, then we must have that $t+(r+\ell) \in \mathcal{T}(x)$.
- Therefore,

$$
\mathcal{T}(y) \subseteq \mathcal{T}(x)-(r+\ell)
$$

- Moreover, we have $(r+\ell) \subseteq \mathcal{T}(x)$.

Periodicity is a class property

- Therefore, every element of $\mathcal{T}(x)-(r+\ell)$ is divisible by $\operatorname{gcd}(\mathcal{T}(x))$.
- Hence, every element of $\mathcal{T}(y)$ is divisible by $\operatorname{gcd}(\mathcal{T}(x))$, so that, by definition of the gcd, we have

$$
\operatorname{gcd}(\mathcal{T}(x)) \leq \operatorname{gcd}(\mathcal{T}(y))
$$

- Interchanging the roles of x, y, we see that $\operatorname{gcd}(\mathcal{T}(y)) \leq \operatorname{gcd}(\mathcal{T}(x))$ as well, which shows that x and y have the same period.
- In fact, the same argument as above shows that if $x \leftrightarrow y$ are two communicating states in S, then

$$
\operatorname{gcd}(\mathcal{T}(x))=\operatorname{gcd}(\mathcal{T}(y))
$$

Aperiodicity

- Let P be the transition matrix of an irreducible DTMC on S.
- We say that P is aperiodic if the period of some state (and hence, all states) is 1 .
- In practice, aperiodicity is not a serious restriction. For instance, if P is an irreducible transition matrix with the unique stationary distribution π, then

$$
P^{\prime}=\frac{1}{2} P+\frac{1}{2} I
$$

is clearly an irreducible, aperiodic, transition matrix with the unique stationary distribution π.

- P^{\prime} is called the lazy version of P.

Convergence theorem

Next week, we will prove the following theorem, which is often called the Fundamental theorm of Markov Chains.

Let P be an irreducible and aperiodic transition matrix on a finite state space S. Then, P has a unique stationary distribution π and moreover, for any $x \in S$,

$$
P_{x, y}^{t} \rightarrow \pi(y) \quad \text { as } t \rightarrow \infty .
$$

For the rest of this week, we will explore some applications of this theorem.

Markov chain Monte Carlo (MCMC)

- A fundamental computational task in many applications is to sample from a given distribution π on a finite set S.
- Given the convergence theorem, the following is a natural approach: construct an irreducible, aperiodic transition matrix on S with stationary distribution π. Simulate a DTMC $\left(X_{n}\right)_{n \geq 0}$ with transition matrix P and starting from $X_{0}=x$ (for some $x \in S$). Output X_{t} for 'sufficiently large' t.
- By the convergence theorem,

$$
\mathbb{P}\left[X_{t}=y \mid X_{0}=x\right]=P_{x, y}^{t} \rightarrow \pi(y),
$$

so that X_{t} has distribution approximately equal to π when t is sufficiently large.

Markov chain Monte Carlo (MCMC)

- Given a probability distribution π on S, how can we construct an irreducible and aperiodic transition matrix with stationary distribution π ?
- In fact, in many applications, we are not given $\pi(x)$, but only $\tilde{\pi}(x)=\pi(x) \cdot Z$ for an unknown (and computationally intractable) constant Z.
- As an example, consider Markov random fields (undirected graphical models). Here, we are given an undirected graph $G=(V, E)$ and the state space S is (for instance)

$$
S=\{-1,1\}^{V}
$$

i.e. there is a variable assigned to each vertex of the graph, which can take on the values ± 1.

- We will denote the number of vertices $|V|$ by n.

The Ising model

- For each element of S (i.e. each configuration of assignments to the variables), there is an associated Hamiltonian, which is typically easy to compute.
- For instance, for the so-called ferromagnetic Ising model, this is given by the function $H:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, where

$$
H\left(x_{1}, \ldots, x_{n}\right)=-\sum_{u v \in E} x_{u} x_{v}-h \sum_{v \in V} x_{v},
$$

where h is a parameter known as the external field.

- So, the energy will be lower if neighboring vertices have the same value and if vertices have the same sign as the external field.

The Ising model

- The corresponding Gibbs distribution/Boltzmann distribution, whose form is motivated by the principle of maximum entropy, is given by

$$
\pi(x)=\exp (-\beta H(x)) / Z,
$$

where $\beta \geq 0$ is called the inverse temperature and Z is a normalizing constant called the partition function.

- Explicitly,

$$
Z=\sum_{x \in\{-1,1\}^{n}} \exp (-\beta H(x)),
$$

which is a sum of exponentially many terms.

- In general, Z is computationally intractable (under standard assumptions in computational complexity theory).

The Ising model

- Since Z is computationally intractable, we essentially have access to the function $\tilde{\pi}:\{-1,1\}^{n} \rightarrow \mathbb{R}^{\geq 0}$ given by

$$
\tilde{\pi}(x)=\exp (-\beta H(x))=\pi(x) \cdot Z
$$

- The reason for the negative sign is the exponent is to ensure that states with a lower Hamiltonian (energy) have a higher probability.
- In particular, for the ferromagnetic Ising model with zero external field $h=0$, the states with the highest probability are $(1, \ldots, 1)$ and $(-1, \ldots,-1)$.
- As $\beta \rightarrow \infty, \pi$ converges to the uniform distribution on $(1, \ldots, 1) \cup(-1, \ldots,-1)$.
- On the other hand, for $\beta=0, \pi$ is simply the uniform distribution on the entire discrete hypercube $\{-1,1\}^{n}$.

The Metropolis chain

- Now, suppose that we are given a probability distribution π on S with $\pi(x)>0$ for all $x \in S$. Possibly, we are not given π, but rather $\tilde{\pi}$, with $\tilde{\pi}=\pi \cdot Z$ for some unknown constant Z.
- Next time, we will see the Metropolis chain, which provides a very general way to construct a transition matrix P with stationary distribution π.
- Moreover, the transition matrix only depends on $\tilde{\pi}$ and not π, which as we have seen, is a very important consideration.

