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Period of a state

Let P be the transition matrix of a DTMC on S .

For a state x ∈ S , let

T (x) := {t ≥ 1 : P t
x,x > 0}

denote the set of times when it is possible for the chain to return to its
starting position x .

The period of x ∈ S is defined to be the greatest common divisor (gcd) of
T (x).
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Example

Two-state Markov chain with the transition matrix

P =

 A B
A 0 1
B 1 0



T (A) = {2, 4, 6, 8, . . . } and T (B) = {2, 4, 6, 8, . . . }.
Hence, gcd(T (A)) = 2 = gcd(T (B)).
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Periodicity is a class property

In the previous example, the chain is irreducible and both states have the
same period.

This is true in general i.e. if P is irreducible, then gcd(T (x)) = gcd(T (y)) for
all x , y ∈ S .

To see this, fix x , y ∈ S . By irreducibility, we can find r , ` ≥ 0 such that
P r
x,y > 0 and P`

y ,x > 0.

We will show that gcd(T (x)) = gcd(T (y)).

For this, note that if t ∈ T (y), then we must have that t + (r + `) ∈ T (x).

Therefore,
T (y) ⊆ T (x)− (r + `).

Moreover, we have (r + `) ⊆ T (x).
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Periodicity is a class property

Therefore, every element of T (x)− (r + `) is divisible by gcd(T (x)).

Hence, every element of T (y) is divisible by gcd(T (x)), so that, by definition
of the gcd, we have

gcd(T (x)) ≤ gcd(T (y)).

Interchanging the roles of x , y , we see that gcd(T (y)) ≤ gcd(T (x)) as well,
which shows that x and y have the same period.

In fact, the same argument as above shows that if x ↔ y are two
communicating states in S , then

gcd(T (x)) = gcd(T (y)).
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Aperiodicity

Let P be the transition matrix of an irreducible DTMC on S .

We say that P is aperiodic if the period of some state (and hence, all states)
is 1.

In practice, aperiodicity is not a serious restriction. For instance, if P is an
irreducible transition matrix with the unique stationary distribution π, then

P ′ =
1

2
P +

1

2
I

is clearly an irreducible, aperiodic, transition matrix with the unique
stationary distribution π.

P ′ is called the lazy version of P.
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Convergence theorem

Next week, we will prove the following theorem, which is often called the
Fundamental theorm of Markov Chains.

Let P be an irreducible and aperiodic transition matrix on a finite state space S .
Then, P has a unique stationary distribution π and moreover, for any x ∈ S ,

P t
x,y → π(y) as t →∞.

For the rest of this week, we will explore some applications of this theorem.
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Markov chain Monte Carlo (MCMC)

A fundamental computational task in many applications is to sample from a
given distribution π on a finite set S .

Given the convergence theorem, the following is a natural approach:
construct an irreducible, aperiodic transition matrix on S with stationary
distribution π. Simulate a DTMC (Xn)n≥0 with transition matrix P and
starting from X0 = x (for some x ∈ S). Output Xt for ‘sufficiently large’ t.

By the convergence theorem,

P[Xt = y | X0 = x ] = P t
x,y → π(y),

so that Xt has distribution approximately equal to π when t is sufficiently
large.
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Markov chain Monte Carlo (MCMC)

Given a probability distribution π on S , how can we construct an irreducible
and aperiodic transition matrix with stationary distribution π?

In fact, in many applications, we are not given π(x), but only π̃(x) = π(x) ·Z
for an unknown (and computationally intractable) constant Z .

As an example, consider Markov random fields (undirected graphical models).
Here, we are given an undirected graph G = (V ,E ) and the state space S is
(for instance)

S = {−1, 1}V

i.e. there is a variable assigned to each vertex of the graph, which can take
on the values ±1.

We will denote the number of vertices |V | by n.
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The Ising model

For each element of S (i.e. each configuration of assignments to the
variables), there is an associated Hamiltonian, which is typically easy to
compute.

For instance, for the so-called ferromagnetic Ising model, this is given by
the function H : {±1}n → R, where

H(x1, . . . , xn) = −
∑
uv∈E

xuxv − h
∑
v∈V

xv ,

where h is a parameter known as the external field.

So, the energy will be lower if neighboring vertices have the same value and if
vertices have the same sign as the external field.
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The Ising model

The corresponding Gibbs distribution/Boltzmann distribution, whose
form is motivated by the principle of maximum entropy, is given by

π(x) = exp(−βH(x))/Z ,

where β ≥ 0 is called the inverse temperature and Z is a normalizing
constant called the partition function.

Explicitly,

Z =
∑

x∈{−1,1}n
exp(−βH(x)),

which is a sum of exponentially many terms.

In general, Z is computationally intractable (under standard assumptions in
computational complexity theory).
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The Ising model

Since Z is computationally intractable, we essentially have access to the
function π̃ : {−1, 1}n → R≥0 given by

π̃(x) = exp(−βH(x)) = π(x) · Z .

The reason for the negative sign is the exponent is to ensure that states with
a lower Hamiltonian (energy) have a higher probability.

In particular, for the ferromagnetic Ising model with zero external field h = 0,
the states with the highest probability are (1, . . . , 1) and (−1, . . . ,−1).

As β →∞, π converges to the uniform distribution on
(1, . . . , 1) ∪ (−1, . . . ,−1).

On the other hand, for β = 0, π is simply the uniform distribution on the
entire discrete hypercube {−1, 1}n.
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The Metropolis chain

Now, suppose that we are given a probability distribution π on S with
π(x) > 0 for all x ∈ S . Possibly, we are not given π, but rather π̃, with
π̃ = π · Z for some unknown constant Z .

Next time, we will see the Metropolis chain, which provides a very general
way to construct a transition matrix P with stationary distribution π.

Moreover, the transition matrix only depends on π̃ and not π, which as we
have seen, is a very important consideration.
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