STATS 217: Introduction to Stochastic Processes | J

Lecture 15
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Period of a state

@ Let P be the transition matrix of a DTMC on S.
o For astate x € S, let

T(x):={t>1:P;, >0}

denote the set of times when it is possible for the chain to return to its
starting position x.
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Period of a state

@ Let P be the transition matrix of a DTMC on S.
o For astate x € S, let

T(x):={t>1:P;, >0}

denote the set of times when it is possible for the chain to return to its
starting position x.

@ The period of x € S is defined to be the greatest common divisor (gcd) of
T(x).
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Example

A B
P=1A 0 1
B 1 0
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Example

Two-state Markov chain with the transition matrix

A B
P=1A 0 1
B 1 0

o T(A)=1{2,4,6,8,...} and T(B) = {2,4,6.8,...}.
@ Hence, gcd(7(A)) =2 = ged(T(B)).
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Periodicity is a class property 75—

Recall +hrs means +hat

?\:,\g 20 P"Erx >0

@ In the previous example, the chain is irreducible and both states have the
same period.

@ This is true in general i.e. if P is irreducible, then gcd(7(x)) = gecd(T (y)) for
all x,y € S.
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Periodicity is a class property

@ In the previous example, the chain is irreducible and both states have the
same period.

@ This is true in general i.e. if P is irreducible, then gcd(7(x)) = gecd(T (y)) for
all x,y € S.

@ To see this, fix x,y € S. By irreducibility, we can find r,£ > 0 such that
P;,>0and P}, >0.
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Periodicity is a class property

@ In the previous example, the chain is irreducible and both states have the
same period.

@ This is true in general i.e. if P is irreducible, then gcd(7(x)) = gecd(T (y)) for
all x,y € S.

@ To see this, fix x,y € S. By irreducibility, we can find r,£ > 0 such that
P;,>0and P}, >0.

o We will show that gcd(7(x)) = ged(T (y)).
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Periodicity is a class property

@ In the previous example, the chain is irreducible and both states have the
same period.

@ This is true in general i.e. if P is irreducible, then gcd(7(x)) = gecd(T (y)) for
all x,y € S.

@ To see this, fix x,y € S. By irreducibility, we can find r,£ > 0 such that
P;,>0and P}, >0.

o We will show that g"c\d(T(x) = gcd(T (y)).

o For this, note that if t € 7(y), then we must have that t + (r + ¢) € T(x).
NN~ NN\NNANA

@ Therefore, __

T(y) ST(x) = (r+90).
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Periodicity is a class property

@ In the previous example, the chain is irreducible and both states have the
same period.

@ This is true in general i.e. if P is irreducible, then gcd(7(x)) = gecd(T (y)) for
all x,y € S.

@ To see this, fix x,y € S. By irreducibility, we can find r,£ > 0 such that
P;,>0and P}, >0.

o We will show that ged(7(x)) = ged(T (y)).
o For this, note that if t € 7(y), then we must have that t + (r + ¢) € T(x).

@ Therefore,

T(y) €T() = (r+0).

WA - SH?S
@ Moreover, we have (r + ¢) C T(x). .C o X
nTy) 1 s
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Periodicity is a class property

@ Therefore, every element of T(x) — (r + £) is divisible by gcd(7(x)).

"
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Periodicity is a class property

@ Therefore, every element of T(x) — (r + £) is divisible by gcd(7(x)).
@ Hence, every element of T (y) is divisible by gcd(7(x)), so that, by definition

of the gcd, we have
S dT() < ged(T))

f\rLj\ = qlx) =(red)
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Periodicity is a class property

@ Therefore, every element of T(x) — (r + £) is divisible by gcd(7(x)).

@ Hence, every element of T (y) is divisible by gcd(7(x)), so that, by definition
of the gcd, we have

ged(T(x)) < ged(T(y))-

o Interchanging the roles of x,y, we see that ged(7 (y)) < ged(7T(x)) as well,
which shows that x and y have the same period.
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Periodicity is a class property

@ Therefore, every element of T(x) — (r + £) is divisible by gcd(7(x)).

@ Hence, every element of T (y) is divisible by gcd(7(x)), so that, by definition
of the gcd, we have

ged(T(x)) < ged(T(y))-

o Interchanging the roles of x,y, we see that ged(7 (y)) < ged(7T(x)) as well,
which shows that x and y have the same period.

@ In fact, the same argument as above shows that if x <> y are two
communicating states in S, then

ged(7(x)) = ged(T(y))-
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Aperiodicity

@ Let P be the transition matrix of an irreducible DTMC on S.

o We say that P is aperiodic if the period of some state (and hence, all states)
is 1.
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Aperiodicity

@ Let P be the transition matrix of an irreducible DTMC on S.

o We say that P is aperiodic if the period of some state (and hence, all states)
is 1.

@ In practice, aperiodicity is not a serious restriction. For instance, if P is an
irreducible transition matrix with the unique stationary distribution 7, then

(ISlx\SlMlz:;P“:q‘})

1.1
Pr=-P+21—
2" T2

is clearly an irreducible, aperiodic, transition matrix with the unique
stationary distribution .

. . mt/e 2w fs el
o P’ is called the lazy version of P. 7 2z
N~ s 0
= 7
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Convergence theorem

Next week, we will prove the following theorem, which is often called the
Fundamental theorm of Markov Chains.

+heorenn
Let P be an irreducible and aperiodic transition matrix on a finite state space S.
Then, P has a unique stationary distribution 7 and moreover, for any x € S,

P, = m(y) ast— oo.
[\
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Convergence theorem

Next week, we will prove the following theorem, which is often called the
Fundamental theorm of Markov Chains.

Let P be an irreducible and aperiodic transition matrix on a finite state space S.
Then, P has a unique stationary distribution 7 and moreover, for any x € S,

P, = m(y) ast— oo.
NN~ w—

For the rest of this week, we will explore some applications of this theorem.
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Markov chain Monte Carlo (MCMC)

@ A fundamental computational task in many applications is to sample from a
given distribution 7 on a finite set S. FUghy>  row, Haws has

notRing > do w]
Markov chavns:
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Markov chain Monte Carlo (MCMC)

@ A fundamental computational task in many applications is to sample from a
given distribution 7 on a finite set S.

@ Given the convergence theorem, the following is a natural approach:
construct an irreducible, aperiodic transition matrix on S with stationary
distribution 7. Simulate a DTMC (X},)n>0 with transition matrix P and
starting from Xy = x (for some x € S). Output X; for ‘sufficiently large’ t.

m\j@&(%—\\w\‘co\\\j (‘}\x’joko\m s8nse)
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-
Markov chain Monte Carlo (MCMC)

@ A fundamental computational task in many applications is to sample from a
given distribution 7 on a finite set S.

@ Given the convergence theorem, the following is a natural approach:
construct an irreducible, aperiodic transition matrix on S with stationary
distribution 7. Simulate a DTMC (X},)n>0 with transition matrix P and
starting from Xy = x (for some x € S). Output X; for ‘sufficiently large’ t.

@ By the convergence theorem,
PX; =y | Xo =x] =P, = n(y),

so that X; has distribution approximately equal to m when t is sufficiently
large.
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Markov chain Monte Carlo (MCMC)

@ Given a probability distribution 7 on S, how can we construct an irreducible
and aperiodic transition matrix with stationary distribution 77
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Markov chain Monte Carlo (MCMC)

@ Given a probability distribution 7 on S, how can we construct an irreducible
and aperiodic transition matrix with stationary distribution 77

@ In fact, in many applications, we are not given 7(x), but only #(x) = n(x)-Z
for an unknown (and computationally intractable) constant Z.

nE) = T
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-
Markov chain Monte Carlo (MCMC)

@ Given a probability distribution 7 on S, how can we construct an irreducible
and aperiodic transition matrix with stationary distribution 77

@ In fact, in many applications, we are not given 7(x), but only #(x) = n(x)-Z
for an unknown (and computationally intractable) constant Z.

@ As an example, consider Markov random fields (undirected graphical models).
Here, we are given an undirected graph G = (V, E) and the state space S is
(for instance)

S={-1,1}V
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Markov chain Monte Carlo (MCMC)

@ Given a probability distribution 7 on S, how can we construct an irreducible
and aperiodic transition matrix with stationary distribution 77

@ In fact, in many applications, we are not given 7(x), but only #(x) = n(x)-Z
for an unknown (and computationally intractable) constant Z.

@ As an example, consider Markov random fields (undirected graphical models).
Here, we are given an undirected graph G = (V, E) and the state space S is
(for instance)

S={-1,1}V

i.e. there is a variable assigned to each vertex of the graph, which can take
on the values +1.

o We will denote the number of vertices |V/| by n.
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The Ising model

@ For each element of S (i.e. each configuration of assignments to the
variables), there is an associated Hamiltonian, which is typically easy to
compute.
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The Ising model

@ For each element of S (i.e. each configuration of assignments to the
variables), there is an associated Hamiltonian, which is typically easy to
compute.

@ For instance, for the so-called ferromagnetic Ising model, this is given by
the function H : {£1}" — R, where

7,5

AN~ ANANNNANAN
H(X17 BRI ,X,,) = E XuXy — h E Xy,
uveE veV

where h is a parameter known as the external field.
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The Ising model

@ For each element of S (i.e. each configuration of assignments to the
variables), there is an associated Hamiltonian, which is typically easy to

compute.
@ For instance, for the so-called ferromagnetic Ising model, this is given by
the function H : {£1}" — R, where PRI
N\ode\l'v\
H(x,...,x,) = — XyXy — h Xy, ¢
R ] ]
uveE veVv

where h is a parameter known as the external field.

@ So, the energy will be lower if neighboring vertices have the same value and if
vertices have the same sign as the external field.
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The Ising model

@ The corresponding Gibbs distribution/Boltzmann distribution, whose
form is motivated by the principle of maximum entropy, is given by

m(x)s= exp(=fH(x))/Z,

where 8 > 0 is called the inverse temperature and Z is a normalizing
constant called the partition function.
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The Ising model

@ The corresponding Gibbs distribution/Boltzmann distribution, whose
form is motivated by the principle of maximum entropy, is given by

m(x) = exp(=fH(x))/Z,
where 8 > 0 is called the inverse temperature and Z is a normalizing

constant called the partition function.

o Explicitly,

Z= Y exp(—BH(),

xe{-1,1}"

which is a sum of exponentially many terms.
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The Ising model

@ The corresponding Gibbs distribution/Boltzmann distribution, whose
form is motivated by the principle of maximum entropy, is given by

m(x) = exp(=fH(x))/Z,
where 8 > 0 is called the inverse temperature and Z is a normalizing
constant called the partition function.

o Explicitly,

Z= Y exp(—BH(),

xe{-1,1}"
which is a sum of exponentially many terms.

@ In general, Z is computationally intractable (under standard assumptions in
computational complexity theory).
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The Ising model

@ Since Z is computationally intractable, we essentially have access to the
function 7 : {—1,1}" — R=0 given by

7t(x) = exp(—BH(x)) = n(x) - Z.
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The Ising model

@ Since Z is computationally intractable, we essentially have access to the
function 7 : {—1,1}" — R=0 given by

7t(x) = exp(—BH(x)) = n(x) - Z.

@ The reason for the negative sign is the exponent is to ensure that states with
a lower Hamiltonian (energy) have a higher probability.
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The Ising model

@ Since Z is computationally intractable, we essentially have access to the
function 7 : {—1,1}" — R=0 given by

7t(x) = exp(—BH(x)) = n(x) - Z.
Hx) = - 2 Xu¥y Hns Solach I can wKe e
wv Vs o maice Xuky= 41
@ The reason for the negative sign is the exponent is to ensure that states with
a lower Hamiltonian (energy) have a higher probability.
@ In particular, for the ferromagnetic Ising model with zero external field h = 0,
the states with the highest probability are (1,...,1) and (—1,...,—1).

@ As B — oo, 7 converges to the uniform distribution on
1,...,1)u(-1,...,-1).
(Lo DU b o . exp(-FHG)
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Flngy - 0.0
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The Ising model

@ Since Z is computationally intractable, we essentially have access to the
function 7 : {—1,1}" — R=0 given by

7t(x) = exp(—BH(x)) = n(x) - Z.

@ The reason for the negative sign is the exponent is to ensure that states with
a lower Hamiltonian (energy) have a higher probability.

@ In particular, for the ferromagnetic Ising model with zero external field h = 0,

the states with the highest probability are (1,...,1) and (-1,...,-1).

@ As B — oo, 7 converges to the uniform distribution on
(1,...,1)U(=1,...,=1). “e. P7Q,...0]= 8¢, ..,-0T1= ¥

@ On the other hand, for 8 = 0, « is simply the uniform distribution on the
entire discrete hypercube {—1,1}". g (x)= 0
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The Metropolis chain

@ Now, suppose that we are given a probability distribution = on S with
m(x) > 0 for all x € S. Possibly, we are not given 7, but rather 7, with
7 = w - Z for some unknown constant Z.

SIS B Y



|
The Metropolis chain

@ Now, suppose that we are given a probability distribution = on S with
m(x) > 0 for all x € S. Possibly, we are not given 7, but rather 7, with
7 = m - Z for some unknown constant Z.

@ Next time, we will see the Metropolis chain, which provides a very general
way to construct a transition matrix P with stationary distribution 7.
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The Metropolis chain

@ Now, suppose that we are given a probability distribution = on S with
m(x) > 0 for all x € S. Possibly, we are not given 7, but rather 7, with
7 = w - Z for some unknown constant Z.

@ Next time, we will see the Metropolis chain, which provides a very general
way to construct a transition matrix P with stationary distribution 7.

@ Moreover, the transition matrix only depends on 7 and not 7, which as we
have seen, is a very important consideration.
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