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The Metropolis chain

Suppose that we are given a probability distribution π on S with π(x) > 0 for
all x ∈ S . Possibly, we are not given π, but rather π̃, with π̃ = π · Z for some
unknown constant Z .

The Metropolis chain provides a very general way to construct a transition
matrix P with stationary distribution π.

Moreover, the transition matrix only depends on π̃ and not π, which as we
have seen, is a very important consideration.

The Metropolis chain consists of two components:

The base chain, which is simply an irreducible Markov chain on S that we can
efficiently simulate. We will denote the transition matrix of the base chain by
Ψ.
The Metropolis filter, which is applied on top of the base chain to get the
correct stationary distribution π.
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The Metropolis chain

For instance, in the case of the Ising model, for which S = {±1}n, the base
chain can simply be the lazy random walk on {±1}n.

For now, suppose that the base chain is symmetric with respect to the
uniform distribution i.e.,

Ψx,y = Ψy ,x ∀x , y ∈ S .

In practice, this is often the case.

On the homework, you will analyze a version of the Metropolis chain where
the base chain is not necessarily symmetric.
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The Metropolis chain

Given a base chain satisfying Ψx,y = Ψy ,x , the transition matrix of the
Metropolis chain is defined by

Px,y =

Ψx,y ·min
{

1, π(y)π(x)

}
y 6= x

1−
∑

z 6=x Ψ(x , z) ·min
{

1, π(z)π(x)

}
y = x .

In other words, the Metropolis filter is an acceptance-rejection filter, which
accepts the proposed move of Ψ from x to y with probability
min{1, π(y)/π(x)}.

Thus, moves to states with greater stationary measure are always accepted,
whereas moves to states with smaller stationary measure are rejected with
probability 1− (π(y)/π(x)).

Also, note that π(x)/π(y) = π̃(x)/π̃(y).
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The Metropolis chain

To show that π is a stationary distribution for P, it is sufficient to show that
P is reversible with respect to π.

Recall this means that π(x)Px,y = π(y)Py ,x for all x , y ∈ S .

So, fix x , y ∈ S . Without loss of generality, suppose that π(x) ≤ π(y).

Then,

π(x) · Px,y = π(x) ·Ψx,y min(1, π(y)/π(x)) = π(x)Ψx,y , and

π(y) · Py ,x = π(y) ·Ψy ,x min(1, π(x)/π(y))

= π(y) ·Ψx,y · π(x)/π(y)

= π(x) ·Ψx,y

= π(x) · Px,y
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The Metropolis chain

Therefore, we see that π is a stationary distribution of P.

Moreover, if Ψ is irreducible and π(x) > 0 for all x ∈ S , then clearly P is also
irreducible.

Therefore, in this case, π is the unique stationary distribution of P.

Also, if Ψ is aperiodic and π(x) > 0 for all x ∈ S , then clearly P is also
aperiodic.

Therefore, by the convergence theorem, if (Xn)n≥0 is a DTMC with transition
matrix P and with arbitrary initial state X0, then as n→∞, the distribution
of Xn converges to π.

Lecture 16 STATS 217 6 / 14



The Metropolis chain

Therefore, we see that π is a stationary distribution of P.

Moreover, if Ψ is irreducible and π(x) > 0 for all x ∈ S , then clearly P is also
irreducible.

Therefore, in this case, π is the unique stationary distribution of P.

Also, if Ψ is aperiodic and π(x) > 0 for all x ∈ S , then clearly P is also
aperiodic.

Therefore, by the convergence theorem, if (Xn)n≥0 is a DTMC with transition
matrix P and with arbitrary initial state X0, then as n→∞, the distribution
of Xn converges to π.

Lecture 16 STATS 217 6 / 14



The Metropolis chain

Therefore, we see that π is a stationary distribution of P.

Moreover, if Ψ is irreducible and π(x) > 0 for all x ∈ S , then clearly P is also
irreducible.

Therefore, in this case, π is the unique stationary distribution of P.

Also, if Ψ is aperiodic and π(x) > 0 for all x ∈ S , then clearly P is also
aperiodic.

Therefore, by the convergence theorem, if (Xn)n≥0 is a DTMC with transition
matrix P and with arbitrary initial state X0, then as n→∞, the distribution
of Xn converges to π.

Lecture 16 STATS 217 6 / 14



The Metropolis chain

Therefore, we see that π is a stationary distribution of P.

Moreover, if Ψ is irreducible and π(x) > 0 for all x ∈ S , then clearly P is also
irreducible.

Therefore, in this case, π is the unique stationary distribution of P.

Also, if Ψ is aperiodic and π(x) > 0 for all x ∈ S , then clearly P is also
aperiodic.

Therefore, by the convergence theorem, if (Xn)n≥0 is a DTMC with transition
matrix P and with arbitrary initial state X0, then as n→∞, the distribution
of Xn converges to π.

Lecture 16 STATS 217 6 / 14



Application to optimization

Let G = (V ,E ) be a graph and let f : V → R be a real-valued function.

A fundamental computational task is to find a vertex v where f is maximized.

However, if V is too large, an exhaustive search may be infeasible.

We can use the Metropolis chain for this task. Consider the probability
distribution on V given by

πβ(v) = eβf (v)/Z (β),

where Z (β) =
∑

v∈V eβf (v) is the partition function.

Since we have access to f (v), we can simulate the Metropolis chain for πβ(v).
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Application to optimization

The key point now is the following: let

V ∗ = {v ∈ V : f (v) = f ∗ = max
u∈V

f (u)}

denote the set of maximizers of f .

Then,

lim
β→∞

πβ(v) = lim
β→∞

eβf (v)

|V ∗|eβf ∗ +
∑

u/∈V ∗ eβf (u)

= lim
β→∞

eβ(f (v)−f
∗)

|V ∗|+
∑

u/∈V ∗ eβ(f (u)−f
∗)

=
1[v ∈ V ∗]

|V ∗|
,

which is the uniform distribution over the set of optimizers.
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Example

We discuss a practical example of optimizing via the Metropolis chain from Persi
Diaconis’s article The Markov Chain Monte Carlo Revolution. This is drawn from
course work of former Stanford students Marc Coram and Phil Beineke. All figures
in these slides are from The Markov Chain Monte Carlo Revolution.
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Example

Figure 1: Coded message from state prison system, delivered by psychologist. The goal is
to decode the message.
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Example

Guess: substitution cipher i.e. the decoding function is given by

f : {symbols used for code} → {usual alphabet}.

Idea: define the score of the decoding function to be

S(f ) :=
n∏

i=1

score(f (αi ), f (αi+1)),

where the coded message from the state prison is α1, . . . , αn, and for two
characters x , y , score(x , y) denotes the fraction of time x and y appear
successively in the English language.

score(x , y) is determined empirically by analyzing a bunch of long texts,
Wikipedia, etc.

Attempt: Find f maximizing S(f ) by running the Metropolis algorithm where
the base chain is given by transpositions.

Is this a reasonable strategy?
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Example

Figure 2: Test run on fragment from Hamlet. This is the original version which is then
encoded with a random permutation.
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Example

Figure 3: Performance of the Metropolis algorithm for Hamlet.
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Example

Decoding returned by the Metropolis algorithm on the prison text after a few
thousand steps (+ some manual cleanup)
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