STATS 217: Introduction to Stochastic Processes | J

Lecture 17
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@ Let i and v be two probability distributions on .

o The total variation distance between them, denoted by TV(u,v), is defined
by
TV(s,) = ma |u(A) — v(A)].
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Total variation distance

@ Let i and v be two probability distributions on .
o The total variation distance between them, denoted by TV(u,v), is defined

by
V(1) = max|u(A) ~ v(A)]|
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@ On the homework, you will show that MO R MU
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Total variation distance

Let u and v be two probability distributions on Q.

by
TV, v) = max |u(A) = v(A)]

@ On the homework, you will show that

Zlu ) = v(x)l-

XEQ
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o Note that TV(u,v) is a g\e/t\rfic on the set of probability measures on Q.
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The total variation distance between them, denoted by TV(u, v), is defined
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—5dx,y) 2 0

Total variation distance isja metric o d(xy)= olly,x) &)
xrgé - ol(r‘_f):O(—)%=j('/)
e TV(u,v) >0 and TV(,u, v) = TV(Z/ ). - W‘M\ﬂ\e ‘{:(&:4%) < d(*’j)

o If TV(u,v) =0, then |u(x) — z/(x)| =0forall xeQsothat y=v.4+ d(j’
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Total variation distance is a metric

® TV(u,v) >0 and TV(u,v) = TV(v, p).
o If TV(u,v) =0, then |u(x) — v(x)| = 0 for all x € Q so that p =v.

o Finally, TV satisfies the triangle inequality: for probability measures i, v, 7 on
Q, TV(p,v) < TV(M n) +TV(n,v).
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Total variation distance is a metric

® TV(u,v) >0 and TV(u,v) = TV(v, p).

o If TV(u,v) =0, then |u(x) — v(x)| = 0 for all x € Q so that p =v.

o Finally, TV satisfies the triangle inequality: for probability measures i, v, 7 on
Q, TV(u,v) < TV(,m) + TV(n,v).

@ Indeed,

e VA Y
ZTV(p,v) = |p(x) —
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Total variation distance is a metric

TV(u,v) >0 and TV(u,v) = TV(v, p).
If TV(p,v) =0, then |u(x) — v(x)| = 0 for all x € Q so that = v.

Finally, TV satisfies the triangle inequality: for probability measures p, v, 7 on
Q, TV(u,v) < TV(1,n) + TV(n,v).

@ Indeed,

2TV(,v) = Y |u(x) —

x€Q

= Inlx +1(x) — v(x)|
XEQ

< 1) = ()l + Y In(x) = v(x))|
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Total variation distance is a metric

TV(u,v) >0 and TV(u,v) = TV(v, p).
If TV(p,v) =0, then |u(x) — v(x)| = 0 for all x € Q so that = v.

Finally, TV satisfies the triangle inequality: for probability measures p, v, 7 on
Q, TV(u,v) < TV(1,n) + TV(n,v).

@ Indeed,

2TV(u,v) = Z lp(x) — V(X)‘(

xeQ

= >~ lu) = n(x) + ) = ()|

xEN
< () = )+ In(x) —
xEN xeQ

=2TV(u,n) +2TV(n,v).
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Dual characterization of total variation distance

@ Let p, v be probability measures on €. Let F denote the collection of all

functions f : Q — R satisfying max,cq |f(x)| < 1.
@ Then,

TV(k, fsup {Zf )—Zf(X)I/(X)}.
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N
Dual characterization of total variation distance

@ Let p, v be probability measures on €. Let F denote the collection of all
functions f : Q — R satisfying max,cq |f(x)| < 1.

@ Then,

V() = 5 sup {Z Fut) -3 f(x)v(x)} .
€ xEQ

x€eQ
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e Why? For any f € F,

> FOQu(x) = D FErx)] < D IF)lu(x) = v(x)|
(/\./\M
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@ You will prove the reverse inequality on the homework.
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Coupling Joiet ohehbubons of Rondon vore O3 )

Px=2] = 2 8 Cx=2x,Y=y]
jeY

@ Let i and v be two probability measures on Q; and Q; respectively.

@ A coupling of u andvg is a probability measure v on £ x €5 such that
w

V(A % Q) = u(A) YA C Q and
Q1 x B) = v(B) VB C Q.
ornb- distRChuhtom
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|
Coupling

@ Let i and v be two probability measures on Q; and Q; respectively.

@ A coupling of x and v is a probability measure v on 3 x €, such that

V(A % Q) = u(A) YA C Q and
’}/(Ql X B) = V(B) VB - Q2.

@ Similarly, a coupling of random variables X : Q] — Q; and Y : Q) — Q, is a

pair of random variables X: Q- €7 and Y. Q- €2 defined on a common
probability space €2 such that

P[X =x] =P[X =x] VxeQ and
P[Y =y]=P[Y =y] VycQ.
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Example: independent coupling
4\ W~P- ? +\ wp-q
70 wp=P /L o wp -4
o Let X ~ Ber(p) and Y ~ Ber(q) where 0 < p < g < 1.

o Formally, we can think of X : [0,1] — {O 1} where [0,1] is equipped with the
uniform measure and =

X(r):{Offrglp

lifr>1-—p

@ Y admits a similar interpretation.
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Example: independent coupling

o Let X ~ Ber(p) and Y ~ Ber(q) where 0 < p < g < 1.
o Formally, we can think of X : [0,1] — {0, 1} where [0, 1] is equipped with the

uniform measure and
ifr<i1l-—
x(ry=40tr=tl=pr
lifr>1—p.

@ Y admits a similar interpretation.

@ An obvious coupling of X and Y is the independent coupling i.e.,
Q =[0,1] x [0,1] equipped with the uniform measure,
AV

~ $(x=0§
= -7
—:QC;{:D]

and similarly for y (with ry replaced by r» and p replaced by q).

Oifn<1-—p

2 =
e {1 ifrn>1—p,
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Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

e Q = [0, 1] with the uniform measure.

~ ifr<i-—
R(r) = O!fr_l p
lifr>1—p.

- fr<il-—
Y(r) = 0!fr71 q
lifr>1-—gq.
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Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

e Q = [0, 1] with the uniform measure.

°
~ ifr<i-—
R(r) = O!fr_l p
lifr>1—p.
°
- fr<il-—
Y(r) = 0!fr71 q
lifr>1-—gq.
@ Then,

PX=1=P[r>1-p]=p=P[X =1]

and similarly for Y.
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Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.
e Q = [0, 1] with the uniform measure. P-4 4- %

(] [ H
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Al “""{L((DI'D X(r) = {1 ifr>1-p. jusk 1 e SM‘J’"
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@ Then, o—-'—*‘ww“,\

PX=1=Pr>1-p=p=P[X=1] o % =

and similarly for Y.
@ The name monotone coupling comes from the observation that if p < g, then
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An application of monotone coupling (T.T)\J
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o Let (P:)t>0 denote a simple random walk starting from 0 where the
probability of taking a step to the right is p.

o Let (Q:)r>o denote a simple random walk starting from 0 where the
probability of taking a step to the right is g.

A Qe = iﬂ:sq
stocrs #1owff storts +\‘ w.p -4
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An application of monotone coupling

o Let (P:)t>0 denote a simple random walk starting from 0 where the
probability of taking a step to the right is p.

o Let (Q:)r>o denote a simple random walk starting from 0 where the
probability of taking a step to the right is g.

e-l]. q”-:[@/ F:I/?_

@ Then, if p < g, intuitively,
PlQ: <z]<P[P,<z] Vt>0,z€Z.
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An application of monotone coupling

Let (P:)¢>0 denote a simple random walk starting from O where the
probability of taking a step to the right is p.

Let (Q:)r>0 denote a simple random walk starting from 0 where the
probability of taking a step to the right is g.
Anrs Sraremgent s

Then, if p < q, intuitively, - on]\\i abouy
N — N |
‘mo\rj« nals'’

P[Q, < z] <P[P, < z] Vt>0,z€Z.

@ Monotone coupling lets us see this directly.
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An application of monotone coupling

N

*= N \ %

w4 Y .

e Let (X, Y) denote the monotone coupling of Ber(p) and Ber(q).
o Let (X, \A/t)tzl denote iid copies of (X, Y). ‘m \ .
~ 2 \{ \ig_
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An application of monotone coupling

Let (X, Y) denote the monotone coupling of Ber(p) and Ber(q).

o Let ()AQ7 \A/t)tzl denote iid copies of ()A<7 \A/) o )'us\— Ao jo
~ ; -~ ~ e w0/
o let P,=>, ;(2X;—1)and Q:=>_;_;(2Yi —1). N |
o

Then, by construction, ,‘3t < at for all t.
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An application of monotone coupling

Let (X, Y) denote the monotone coupling of Ber(p) and Ber(q).

Let (X, \A/t)tzl denote iid copies of (X, Y).

Let P, = >0 (2X; —1) and Q: = X0, (2Y; — 1).

Then, by construction, ,‘3t < @t for all t.

@ Moreover, P; ~ ﬁt and Q; ~ at for all t.
Q E PE < Ej = q(_
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An application of monotone coupling

Let (X, Y) denote the monotone coupling of Ber(p) and Ber(q).

Let (X, \A/t)tzl denote iid copies of (X, Y).

Let P, = >0 (2X; —1) and Q: = X0, (2Y; — 1).

Then, by construction, ,‘3t < at for all t.

@ Moreover, P; ~ ﬁt and Q; ~ @t for all t.

So, for any z € Z and any t > 0,

P[Q: < z] = P[Q; < z] < P[P, < z] = P[P, = Z].
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Coupling and total variation

@ Let 1 and v be two probability distributions on .
@ The coupling lemma asserts that

TV(u,v) = inf{P[X # Y] : (X, Y) is a coupling of y and v}.
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Coupling and total variation

@ Let 1 and v be two probability distributions on .
@ The coupling lemma asserts that

TV(u,v) = inf{P[X # Y] : (X, Y) is a coupling of y and v}.

o Example: let p = Ber(p) and v = Ber(q) with 0 < p<qg< 1.
@ Then, by direct computation,

TV(Ber(p), Ber(q)) = %(Iq —pl+ll-g-1+p))=qg—p.
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Coupling and total variation

@ Let 1 and v be two probability distributions on .
@ The coupling lemma asserts that

TV(u,v) = inf{P[X # Y] : (X, Y) is a coupling of y and v}.

Example: let = Ber(p) and v = Ber(q) with 0 < p < g < 1.
Then, by direct computation,

TV(Ber(p), Ber(q)) = %(Iq —pl+ll-g-1+p))=qg—p.

For the monotone coupling ()A(, \A/) we have

PIX#Y]=P[l-qg<r<1l-pl=qg-p.
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Coupling and total variation

@ Let 1 and v be two probability distributions on .
@ The coupling lemma asserts that

TV(u,v) = inf{P[X # Y] : (X, Y) is a coupling of y and v}.

Example: let = Ber(p) and v = Ber(q) with 0 < p < g < 1.
Then, by direct computation,

TV(Ber(p), Ber(q)) = %(Iq —pl+ll-g-1+p))=qg—p.

For the monotone coupling ()A(, \A/) we have

PIX#Y]=P[l-qg<r<1l-pl=qg-p.

@ The above characterization shows that the monotone coupling is an optimal
coupling.
STATS 217 10/11
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Coupling and total variation

e TV(u,v) =inf{P[X # Y]: (X, Y) is a coupling of y and v}.

o Easy direction: <. Why?
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Coupling and total variation

e TV(u,v) =inf{P[X # Y]: (X, Y) is a coupling of y and v}.
o Easy direction: <. Why?

o Let (X, Y) be any coupling of p,v. Let AC Q.
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Coupling and total variation

o TV(u,v) =inf{P[X # Y]:(X,Y)is a coupling of 1 and v}.
o Easy direction: <. Why?
o Let (X, Y) be any coupling of u,v. Let A C Q. Then,

pu(A) — v(A) = P[X € A = P[Y € A]
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Coupling and total variation

o TV(u,v) =inf{P[X # Y]:(X,Y)is a coupling of 1 and v}.
o Easy direction: <. Why?
o Let (X, Y) be any coupling of u,v. Let A C Q. Then,

1(A) — v(A) = P[X € A —P[Y € A]
=PX €Al-P[X €AY A —PX¢AY €A
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Coupling and total variation

o TV(u,v) =inf{P[X # Y]:(X,Y)is a coupling of 1 and v}.
o Easy direction: <. Why?
o Let (X, Y) be any coupling of u,v. Let A C Q. Then,

1(A) — v(A) = P[X € A] — P[Y € A]
—PIXcA—PX €AY cA-PXEAYcA
=PX €AY ¢A-PXEAY cA
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Coupling and total variation

o TV(u,v) =inf{P[X # Y]:(X,Y)is a coupling of 1 and v}.
o Easy direction: <. Why?
o Let (X, Y) be any coupling of u,v. Let A C Q. Then,

1(A) — v(A) = P[X € A] — P[Y € A]
—PIXcA—PX €AY cA-PXEAYcA
—PIX€AY¢A-PXEAY €A
<PIX €AY ¢A
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Coupling and total variation

o TV(u,v) =inf{P[X # Y]:(X,Y)is a coupling of 1 and v}.
o Easy direction: <. Why?
o Let (X, Y) be any coupling of u,v. Let A C Q. Then,

1(A) — v(A) = P[X € A] — P[Y € A]
—PIXcA—PX €AY cA-PXEAYcA
—PIX€AY¢A-PXEAY €A
<PIX €AY ¢A
<P[X #£ Y]

@ The reverse inequality is a starred problem on HW?7.
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