STATS 217: Introduction to Stochastic Processes I

Lecture 17

prove the conv. thm for Markov chains i'rr. & aperiodik" "goal: Total variation distance

- Let μ and ν be two probability distributions on Ω .
- The total variation distance between them, denoted by $TV(\mu, \nu)$, is defined by -

$$\mathsf{TV}(\mu, \nu) := \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|.$$

Max
$$[U(A_i) - U(A_i)]$$

Max $[U(A_i) - U(A_i)]$
Max $[U(A_i) - U(A_i$

12

Total variation distance

- Let μ and ν be two probability distributions on Ω .
- The total variation distance between them, denoted by TV(μ, ν), is defined by

Total variation distance

- Let μ and ν be two probability distributions on Ω .
- The total variation distance between them, denoted by TV(μ, ν), is defined by

$$\mathsf{TV}(\mu,
u) := \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|.$$

• On the homework, you will show that

$$\mathsf{TV}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

• Note that $TV(\mu, \nu)$ is a metric on the set of probability measures on Ω . distance S^2 for every $x \in \Omega \rightarrow \mu(X)$ $d: S \times S \rightarrow \mathbb{R}^{2,0}$ Let us I

Total variation distance is a metric
$$\rightarrow d(x, y) \ge 0$$
 (\checkmark)
 $x \leftarrow 2$ $\rightarrow d(x, y) = d(y, x) (\checkmark)
 $x \leftarrow 2$ $\rightarrow d(x, y) = 0 (=) x = y(\checkmark)
 $\rightarrow d(x, y) = 0 (=) x = y(\checkmark)
 $\rightarrow d(x, y) = 0 (=) x = y(\checkmark)
 $\rightarrow d(x, y) = 0 (=) x = y(\checkmark)
 $\rightarrow d(x, z) \le d(x, y)$
 $= 1f TV(\mu, \nu) = 0, \text{ then } |\mu(x) - \nu(x)| = 0 \text{ for all } x \in \Omega \text{ so that } \mu \equiv \nu + d(y, z)$
 $= \frac{1}{2} \sum_{x \in A} |\mu(x) - \nu(x)|$$$$$$

•
$$\mathsf{TV}(\mu,\nu) \ge 0$$
 and $\mathsf{TV}(\mu,\nu) = \mathsf{TV}(\nu,\mu)$.

• If
$$\mathsf{TV}(\mu,\nu) = 0$$
, then $|\mu(x) - \nu(x)| = 0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.

• Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on Ω , TV $(\mu, \nu) \leq$ TV $(\mu, \eta) +$ TV (η, ν) .

$$\mathcal{L}^{(\mu,\eta)} \xrightarrow{(\eta,\nu)} \overline{\mathcal{L}}^{(\eta,\nu)} \xrightarrow{(\eta,\nu)} \overline{\mathcal{L}}^{(\eta,\nu)}$$

.

•
$$\mathsf{TV}(\mu,\nu) \ge 0$$
 and $\mathsf{TV}(\mu,\nu) = \mathsf{TV}(\nu,\mu)$.

• If
$$\mathsf{TV}(\mu, \nu) = 0$$
, then $|\mu(x) - \nu(x)| = 0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.

• Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on Ω, TV(μ , ν) \leq TV(μ , η) + TV(η , ν).

Indeed.

$$\mathcal{Z}\mathsf{T}\mathsf{V}(\mu,\nu) = \sum_{x\in\Omega} |\mu(x) - \nu(x)|$$

$$= \sum_{x\in\Omega} |\mu(x) - \eta(x) + \eta(x) - \nu(x)|$$

$$\leq \sum_{x\in\Omega} |\mu(x) - \eta(x) - \eta(x)|$$

$$+ \sum_{x\in\Omega} |\eta(x) - \nu(x)|$$

$$+ \sum_{x\in\Omega} |\eta(x) - \nu(x)|$$

$$= \mathcal{Z}\mathsf{T}\mathsf{V}(\mu,\eta) + \mathcal{Z}\mathsf{T}\nu(\eta,\nu)$$

•
$$\mathsf{TV}(\mu,\nu) \ge 0$$
 and $\mathsf{TV}(\mu,\nu) = \mathsf{TV}(\nu,\mu)$.

• If
$$\mathsf{TV}(\mu, \nu) = 0$$
, then $|\mu(x) - \nu(x)| = 0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.

• Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on Ω , TV $(\mu, \nu) \leq$ TV $(\mu, \eta) +$ TV (η, ν) .

Indeed,

$$2 \operatorname{TV}(\mu, \nu) = \sum_{x \in \Omega} |\mu(x) - \nu(x)|$$
$$= \sum_{x \in \Omega} |\mu(x) - \eta(x) + \eta(x) - \nu(x)|$$
$$\leq \sum_{x \in \Omega} |\mu(x) - \eta(x)| + \sum_{x \in \Omega} |\eta(x) - \nu(x)|$$

•
$$\mathsf{TV}(\mu,\nu) \ge 0$$
 and $\mathsf{TV}(\mu,\nu) = \mathsf{TV}(\nu,\mu)$.

• If
$$\mathsf{TV}(\mu, \nu) = 0$$
, then $|\mu(x) - \nu(x)| = 0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.

• Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on Ω , TV $(\mu, \nu) \leq$ TV $(\mu, \eta) +$ TV (η, ν) .

Indeed,

$$\boxed{2 \operatorname{TV}(\mu, \nu) = \sum_{x \in \Omega} |\mu(x) - \nu(x)|}$$
$$= \sum_{x \in \Omega} |\mu(x) - \eta(x) + \eta(x) - \nu(x)|$$
$$\leq \sum_{x \in \Omega} |\mu(x) - \eta(x)| + \sum_{x \in \Omega} |\eta(x) - \nu(x)|$$
$$= 2 \operatorname{TV}(\mu, \eta) + 2 \operatorname{TV}(\eta, \nu).$$
$$\boxed{\mathsf{TV}(\mu, \nu)} = \operatorname{Ne}_{\mathsf{A} \subseteq -\Omega} |\mu(\mathsf{A}) - \nu(\mathsf{A})|.$$

Dual characterization of total variation distance

- Let μ, ν be probability measures on Ω. Let F denote the collection of all functions f : Ω → ℝ satisfying max_{x∈Ω} |f(x)| ≤ 1.
- Then,

Dual characterization of total variation distance

- Let μ, ν be probability measures on Ω. Let F denote the collection of all functions f : Ω → ℝ satisfying max_{x∈Ω} |f(x)| ≤ 1.
- Then,

$$\overline{\mathsf{TV}}(\mu,\nu) = \frac{1}{2} \sup_{f \in \mathcal{F}} \left\{ \sum_{x \in \Omega} f(x)\mu(x) - \sum_{x \in \Omega} f(x)\nu(x) \right\}.$$

• Why? For any $f \in \mathcal{F}$,

$$|\sum_{x\in\Omega} f(x)\mu(x) - \sum_{x\in\Omega} f(x)\nu(x)| \le \sum_{x\in\Omega} |f(x)||\mu(x) - \nu(x)|$$
$$= \sum_{x\in\Omega} |\mu(x) - \nu(x)|.$$

You will prove the reverse inequality on the homework.

Coupling

joint distributions of Random vars (x, Y)

• Let μ and ν be two probability measures on Ω_1 and Ω_2 respectively.

• A coupling of μ and ν is a probability measure γ on $\Omega_1 \times \Omega_2$ such that

 $\gamma(A \times \Omega_{2}) = \mu(A) \quad \forall A \subseteq \Omega_{1} \text{ and}$ $\gamma(\Omega_{1} \times B) = \nu(B) \quad \forall B \subseteq \Omega_{2}.$ $X \quad , \quad Y \quad \longrightarrow \quad \text{conshuct joint distribution}$ $e_{X} : \left\{ \begin{array}{c} \widehat{P} \ [X = x] \ \mathcal{P} \ [Y = Y] \end{array} \right\}, \quad \widehat{P} \ [X = y] = \left[\begin{array}{c} \widehat{P} \ [X = x] \end{array} \right]$

Coupling

- Let μ and ν be two probability measures on Ω_1 and Ω_2 respectively.
- A coupling of μ and ν is a probability measure γ on $\Omega_1 \times \Omega_2$ such that

$$\gamma(A \times \Omega_2) = \mu(A) \quad \forall A \subseteq \Omega_1 \text{ and}$$

 $\gamma(\Omega_1 \times B) = \nu(B) \quad \forall B \subseteq \Omega_2.$

• Similarly, a coupling of random variables $X : \Omega'_1 \to \Omega_1$ and $Y : \Omega'_2 \to \Omega_2$ is a pair of random variables $\widehat{X} : \Omega \to \Omega_1$ and $\widehat{Y} : \Omega \to \Omega_2$ defined on a common probability space Ω such that

$$\mathbb{P}[\widehat{X} = x] = \mathbb{P}[X = x] \quad \forall x \in \Omega_1 \text{ and}$$

 $\mathbb{P}[\widehat{Y} = y] = \mathbb{P}[Y = y] \quad \forall y \in \Omega_2.$

Example: independent coupling

- +1 w.p. p +1 w.p. 9 11 0 w.p. 1-p 2 0 w.p. 1-q
- Let $X \sim Ber(p)$ and $Y \sim Ber(q)$ where $0 \le p \le q \le 1$.
- Formally, we can think of $X : [0,1] \to \{0,1\}$ where [0,1] is equipped with the uniform measure and

$$X(r) = \begin{cases} 0 \text{ if } r \leq 1 - p \\ 1 \text{ if } r > 1 - p \end{cases}$$

• Y admits a similar interpretation.

$$Y(t) = \begin{cases} 0 & if t \leq 1-9 \\ 1 & if t > 1-9 \end{cases}$$
$$X : \Omega \longrightarrow R \qquad Y : \Omega \longrightarrow R$$
$$\Omega = [o_{1}i]$$

Example: independent coupling

• Let $X \sim \text{Ber}(p)$ and $Y \sim \text{Ber}(q)$ where $0 \le p \le q \le 1$.

• Formally, we can think of $X:[0,1] \to \{0,1\}$ where [0,1] is equipped with the uniform measure and

$$X(r) = \begin{cases} 0 \text{ if } r \leq 1-p \\ 1 \text{ if } r > 1-p. \end{cases}$$

- Y admits a similar interpretation.
- An obvious coupling of X and Y is the **independent coupling** i.e., $\Omega = \begin{bmatrix} 0,1 \end{bmatrix} \times \begin{bmatrix} 0,1 \end{bmatrix} \text{ equipped with the uniform measure,}$ $\widehat{X}(\underline{r_1},\underline{r_2}) = \begin{cases} 0 \text{ if } r_1 \leq 1-p & \sqrt{p} \begin{bmatrix} 2 \\ 2 \\ -p \end{bmatrix} \\ 1 \text{ if } r_1 \geq 1-p, & -p \end{bmatrix}$

and similarly for
$$\widehat{Y}$$
 (with r_1 replaced by r_2 and p replaced by q).

Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

• $\Omega = [0,1]$ with the uniform measure.

$$\widehat{X}(r) = \begin{cases} 0 \text{ if } r \leq 1-p\\ 1 \text{ if } r > 1-p. \end{cases}$$
$$\widehat{Y}(r) = \begin{cases} 0 \text{ if } r \leq 1-q\\ 1 \text{ if } r > 1-q. \end{cases}$$

۲

۲

Example: monotone coupling

A particularly useful coupling in this case is the **monotone coupling**.

• $\Omega = [0, 1]$ with the uniform measure.

$$\widehat{X}(r) = \begin{cases} 0 \text{ if } r \leq 1 - p \\ 1 \text{ if } r > 1 - p. \end{cases}$$
$$\widehat{Y}(r) = \begin{cases} 0 \text{ if } r \leq 1 - q \\ 1 \text{ if } r > 1 - q. \end{cases}$$

r

• Then,

۰

۲

$$\mathbb{P}[\widehat{X}=1]=\mathbb{P}[r>1-p]=p=\mathbb{P}[X=1]$$

and similarly for \widehat{Y} .

Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

•
$$\Omega = [0, 1]$$
 with the uniform measure.
 $\int_{T}^{p=1} \sum_{x=1}^{n} Q = \frac{2}{3}$
 $\int_{T}^{p=1} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-p \\ 1 \text{ if } r > 1-p. \end{cases}$
 $\int_{T}^{p=1} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-p \\ 1 \text{ if } r > 1-p. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-p \\ 1 \text{ if } r > 1-p. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-p \\ 1 \text{ if } r > 1-q. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 1 \text{ if } r > 1-q. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 1 \text{ if } r > 1-q. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 1 \text{ if } r > 1-q. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 1 \text{ if } r > 1-q. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 1 \text{ if } r > 1-q. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 1 \text{ if } r > 1-q. \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 0 \text{ of } r \leq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ if } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ of } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ of } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ of } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ of } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} \sum_{x=1}^{n} Q = \begin{cases} 0 \text{ of } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} Q = \begin{cases} 0 \text{ of } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} Q = \begin{cases} 0 \text{ of } r \leq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} Q = \begin{cases} 0 \text{ of } r \geq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} Q = \begin{cases} 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} Q = \begin{cases} 0 \text{ of } r \geq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} Q = \begin{cases} 0 \text{ of } r \geq 1-q \\ 0 \text{ of } r \geq 1-q \end{cases}$
 $\int_{2}^{n} Q = \begin{cases} 0 \text{ of } r \geq 1-q \\ 0 \text{ of } r \geq 1-q$

and similarly for \widehat{Y} .

• The name monotone coupling comes from the observation that if $p \le q$, then $\widehat{X} \le \widehat{Y}$ determistically. $f_{not} = a_{bug}$.

 Let (P_t)_{t≥0} denote a simple random walk starting from 0 where the probability of taking a step to the right is p.

 Let (Q_t)_{t≥0} denote a simple random walk starting from 0 where the probability of taking a step to the right is q.

 P_{L} ±1 steps Q_{L} ±1 steps storts ±1 w.p.p starts ±1 w.p.9 at 0 -1 w.p. 1-p at 0 -1 w.p. 1-9 $p = \frac{1}{2}$ $q = \frac{2}{3}$

- Let (P_t)_{t≥0} denote a simple random walk starting from 0 where the probability of taking a step to the right is p.
- Let (Q_t)_{t≥0} denote a simple random walk starting from 0 where the probability of taking a step to the right is q.

• Then, if
$$p \leq q$$
, intuitively,
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$
 $\mathbb{P}[Q_t \geq z] \quad \forall t \geq 0,$

٠

- Let (P_t)_{t≥0} denote a simple random walk starting from 0 where the probability of taking a step to the right is p.
- Let (Q_t)_{t≥0} denote a simple random walk starting from 0 where the probability of taking a step to the right is q.

• Then, if
$$p \le q$$
, intuitively,
 $\mathbb{P}[Q_t \le z] \le \mathbb{P}[P_t \le z]$ $\forall t \ge 0, z \in \mathbb{Z}$.
 $\forall t \ge 0, z \in \mathbb{Z}$.

• Monotone coupling lets us see this directly.

• Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of Ber(p) and Ber(q).

• Let $(\widehat{X}_t, \widehat{Y}_t)_{t \ge 1}$ denote iid copies of $(\widehat{X}, \widehat{Y})$.

- Let (\hat{X}, \hat{Y}) denote the monotone coupling of Ber(p) and Ber(q).
- Let $(\widehat{X}_t, \widehat{Y}_t)_{t \ge 1}$ denote iid copies of $(\widehat{X}, \widehat{Y})$. Let $\widehat{P}_t = \sum_{i=1}^t (2\widehat{X}_i 1)$ and $\widehat{Q}_t = \sum_{i=1}^t (2\widehat{Y}_i 1)$.
- Then, by construction, $\widehat{P}_t \leq \widehat{Q}_t$ for all t.

- Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of Ber(p) and Ber(q).
- Let $(\widehat{X}_t, \widehat{Y}_t)_{t \ge 1}$ denote iid copies of $(\widehat{X}, \widehat{Y})$.
- Let $\widehat{P}_t = \sum_{i=1}^t (2\widehat{X}_i 1)$ and $\widehat{Q}_t = \sum_{i=1}^t (2\widehat{Y}_i 1)$.
- Then, by construction, $\widehat{P}_t \leq \widehat{Q}_t$ for all t.
- Moreover, $P_t \sim \widehat{P}_t$ and $Q_t \sim \widehat{Q}_t$ for all t.

- Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of Ber(p) and Ber(q).
- Let $(\widehat{X}_t, \widehat{Y}_t)_{t \ge 1}$ denote iid copies of $(\widehat{X}, \widehat{Y})$.
- Let $\widehat{P}_t = \sum_{i=1}^t (2\widehat{X}_i 1)$ and $\widehat{Q}_t = \sum_{i=1}^t (2\widehat{Y}_i 1)$.
- Then, by construction, $\widehat{P}_t \leq \widehat{Q}_t$ for all t.
- Moreover, $P_t \sim \widehat{P}_t$ and $Q_t \sim \widehat{Q}_t$ for all t.
- So, for any $z \in \mathbb{Z}$ and any $t \geq 0$,

$$\mathbb{P}[Q_t \leq z] = \mathbb{P}[\widehat{Q}_t \leq z] \leq \mathbb{P}[\widehat{P}_t \leq z] = \mathbb{P}[P_t = z].$$

- Let μ and ν be two probability distributions on $\Omega.$
- The coupling lemma asserts that

 $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$

- Let μ and ν be two probability distributions on Ω .
- The coupling lemma asserts that

 $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$

- Example: let $\mu = Ber(p)$ and $\nu = Ber(q)$ with $0 \le p \le q \le 1$.
- Then, by direct computation,

$$\mathsf{TV}(\mathsf{Ber}(p),\mathsf{Ber}(q)) = rac{1}{2}(|q-p|+|1-q-1+p|) = q-p.$$

- Let μ and ν be two probability distributions on Ω .
- The coupling lemma asserts that

 $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$

- Example: let $\mu = Ber(p)$ and $\nu = Ber(q)$ with $0 \le p \le q \le 1$.
- Then, by direct computation,

$$\mathsf{TV}(\mathsf{Ber}(p),\mathsf{Ber}(q)) = rac{1}{2}(|q-p|+|1-q-1+p|) = q-p.$$

• For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$\mathbb{P}[\widehat{X}
eq \widehat{Y}] = \mathbb{P}[1 - q \le r \le 1 - p] = q - p.$$

- Let μ and ν be two probability distributions on Ω .
- The coupling lemma asserts that

 $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$

- Example: let $\mu = \mathsf{Ber}(p)$ and $\nu = \mathsf{Ber}(q)$ with $0 \le p \le q \le 1$.
- Then, by direct computation,

$$\mathsf{TV}(\mathsf{Ber}(p),\mathsf{Ber}(q)) = \frac{1}{2}(|q-p|+|1-q-1+p|) = q-p.$$

• For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$\mathbb{P}[\widehat{X}
eq \widehat{Y}] = \mathbb{P}[1 - q \le r \le 1 - p] = q - p.$$

• The above characterization shows that the monotone coupling is an **optimal coupling**.

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: \leq . Why?

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: \leq . Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$.

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: \leq . Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$. Then,

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: \leq . Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$. Then,

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$
$$= \mathbb{P}[X \in A] - \mathbb{P}[X \in A, Y \in A] - \mathbb{P}[X \notin A, Y \in A]$$

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: \leq . Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$. Then,

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$

= $\mathbb{P}[X \in A] - \mathbb{P}[X \in A, Y \in A] - \mathbb{P}[X \notin A, Y \in A]$
= $\mathbb{P}[X \in A, Y \notin A] - \mathbb{P}[X \notin A, Y \in A]$

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: \leq . Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$. Then,

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$

= $\mathbb{P}[X \in A] - \mathbb{P}[X \in A, Y \in A] - \mathbb{P}[X \notin A, Y \in A]$
= $\mathbb{P}[X \in A, Y \notin A] - \mathbb{P}[X \notin A, Y \in A]$
 $\leq \mathbb{P}[X \in A, Y \notin A]$

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: \leq . Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$. Then,

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$

= $\mathbb{P}[X \in A] - \mathbb{P}[X \in A, Y \in A] - \mathbb{P}[X \notin A, Y \in A]$
= $\mathbb{P}[X \in A, Y \notin A] - \mathbb{P}[X \notin A, Y \in A]$
 $\leq \mathbb{P}[X \in A, Y \notin A]$
 $\leq \mathbb{P}[X \notin Y].$

• The reverse inequality is a starred problem on HW7.