STATS 217: Introduction to Stochastic Processes I

Lecture 17

Total variation distance
"goal: prove the conc. the for markov chains irk. \& aperiodic"

- Let μ and ν be two probability distributions on Ω.
- The total variation distance between them, denoted by $\operatorname{TV}(\mu, \nu)$, is defined by

$$
\operatorname{TV}(\mu, \nu):=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)|
$$

μ and D are prob. distributions here.
$|\Omega|=n$ there are 2^{n} possible subsets of

$$
\max \left|{ }_{i n} \mu\left(A_{i}\right)-\nu\left(A_{i}\right)\right|
$$

$$
A_{1}, A_{2}, \ldots, A_{2} n
$$

Total variation distance

- Let μ and ν be two probability distributions on Ω.
- The total variation distance between them, denoted by $\operatorname{TV}(\mu, \nu)$, is defined by

$$
\left.\underset{\sim}{\operatorname{TV}(\mu, \nu)}:=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)| \cdot\right]
$$

need to take the maximum of

- On the homework, you will show that
ς

$$
\begin{aligned}
& \left.\operatorname{TV}(\mu, \nu)=\frac{1}{2} \sum_{x \in \Omega} \right\rvert\, \mu(x)-\nu\left(\overline{x)}|\cdot| \quad 2^{|\Omega|}\right. \text { subsets } \\
& \frac{1}{2}[|\mu(\{1\})-D(\{1\})| \\
& -1 \ldots+11] \text {. }
\end{aligned}
$$

Total variation distance

- Let μ and ν be two probability distributions on Ω.
- The total variation distance between them, denoted by $\operatorname{TV}(\mu, \nu)$, is defined by

$$
\operatorname{TV}(\mu, \nu):=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)| .
$$

- On the homework, you will show that

$$
\mathrm{TV}(\mu, \nu)=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)| .
$$

- Note that $\operatorname{TV}(\mu, \nu)$ is a metric on the set of probability measures on Ω. distance S
prob meas on Ω
for every $x \in \Omega \rightarrow \mu(x) \quad d: S x S \rightarrow \mathbb{R} \geq 0$

Total variation distance is a metric $\rightarrow d(x, y)=d(y, x)(v)$

$$
x \circ z \rightarrow d(x, y)=d(y, y)=0(\Rightarrow x=y(v)
$$

- $\operatorname{TV}(\mu, \nu) \geq 0$ and $\operatorname{TV}(\underline{\mu, \nu})=\operatorname{TV}(\nu, \mu) . \quad \rightarrow$ triangle $d(x, z) \leqslant d(x, y)$
- If $\operatorname{TV}(\mu, \nu)=0$, then $|\mu(x)-\nu(x)|=0$ for all $x \in \Omega$ so that $\mu \equiv \nu+d(y, z)$

$$
\left.\frac{1}{2} \sum_{x \in \Omega_{1}}^{1} \nu(x)-\nu(x) \right\rvert\,
$$

Total variation distance is a metric

- $\operatorname{TV}(\mu, \nu) \geq 0$ and $\operatorname{TV}(\mu, \nu)=\operatorname{TV}(\nu, \mu)$.
- If $\operatorname{TV}(\mu, \nu)=0$, then $|\mu(x)-\nu(x)|=0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.
- Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on $\Omega, \operatorname{TV}(\mu, \nu) \leq \operatorname{TV}(\mu, \eta)+\operatorname{TV}(\eta, \nu)$.

Total variation distance is a metric

- $\operatorname{TV}(\mu, \nu) \geq 0$ and $\operatorname{TV}(\mu, \nu)=\operatorname{TV}(\nu, \mu)$.
- If $\operatorname{TV}(\mu, \nu)=0$, then $|\mu(x)-\nu(x)|=0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.
- Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on $\Omega, \operatorname{TV}(\mu, \nu) \leq \operatorname{TV}(\mu, \eta)+\operatorname{TV}(\eta, \nu)$.
- Indeed,

$$
\begin{aligned}
\mathscr{Z} \operatorname{TV}(\mu, \nu) & =\sum_{x \in \Omega}|\mu(x)-\nu(x)| \\
& =\sum_{x \in \Omega}|\mu(x)-\eta(x)+\eta(x)-\nu(x)| \\
& \leq \sum_{x \in \Omega}^{\sum_{1}^{\prime}}|\mu(x)-\eta(x)| \\
& =\underset{2_{1}}{ }|\eta(x)-\nu(x)| \\
& \mathscr{L} T V(\mu, \eta)+\Omega T v(\eta, \nu)
\end{aligned}
$$

Total variation distance is a metric

- $\operatorname{TV}(\mu, \nu) \geq 0$ and $\operatorname{TV}(\mu, \nu)=\operatorname{TV}(\nu, \mu)$.
- If $\operatorname{TV}(\mu, \nu)=0$, then $|\mu(x)-\nu(x)|=0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.
- Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on $\Omega, \operatorname{TV}(\mu, \nu) \leq \operatorname{TV}(\mu, \eta)+\operatorname{TV}(\eta, \nu)$.
- Indeed,

$$
\begin{aligned}
2 \operatorname{TV}(\mu, \nu) & =\sum_{x \in \Omega}|\mu(x)-\nu(x)| \\
& =\sum_{x \in \Omega}|\mu(x)-\eta(x)+\eta(x)-\nu(x)| \\
& \leq \sum_{x \in \Omega}|\mu(x)-\eta(x)|+\sum_{x \in \Omega}|\eta(x)-\nu(x)|
\end{aligned}
$$

Total variation distance is a metric

- $\operatorname{TV}(\mu, \nu) \geq 0$ and $\operatorname{TV}(\mu, \nu)=\operatorname{TV}(\nu, \mu)$.
- If $\operatorname{TV}(\mu, \nu)=0$, then $|\mu(x)-\nu(x)|=0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.
- Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on $\Omega, \operatorname{TV}(\mu, \nu) \leq \operatorname{TV}(\mu, \eta)+\operatorname{TV}(\eta, \nu)$.
- Indeed,

$$
\begin{aligned}
\mid 2 \operatorname{TV}(\mu, \nu) & =\sum_{x \in \Omega}|\mu(x)-\nu(x)| \\
& =\sum_{x \in \Omega}|\mu(x)-\eta(x)+\eta(x)-\nu(x)| \\
& \leq \sum_{x \in \Omega}|\mu(x)-\eta(x)|+\sum_{x \in \Omega}|\eta(x)-\nu(x)| \\
& =2 \operatorname{TV}(\mu, \eta)+2 \operatorname{TV}(\eta, \nu) \\
\operatorname{TV}(\mu, D) & =\max _{\mathbf{A} \subseteq \Omega}|\mu(\mathbf{A})-D(\mathbf{A})| .
\end{aligned}
$$

Dual characterization of total variation distance

- Let μ, ν be probability measures on Ω. Let \mathcal{F} denote the collection of all functions $f: \Omega \rightarrow \mathbb{R}$ satisfying $\max _{x \in \Omega}|f(x)| \leq 1$.
- Then,

$$
\operatorname{TV}(\mu, \nu)=\frac{1}{2} \sup _{f \in \mathcal{F}}\left\{\sum_{x \in \Omega} f(x) \mu(x)-\sum_{x \in \Omega} f(x) \nu(x)\right\} .
$$

we demand that

$$
\begin{aligned}
& |f(x)| \leq 1 \\
& \forall x \in 1 \Omega 1
\end{aligned}
$$

Dual characterization of total variation distance

- Let μ, ν be probability measures on Ω. Let \mathcal{F} denote the collection of all functions $f: \Omega \rightarrow \mathbb{R}$ satisfying $\max _{x \in \Omega}|f(x)| \leq 1$.
- Then,

$$
\overline{\operatorname{TV}}(\mu, \nu)=\frac{1}{2} \sup _{f \in \mathcal{F}}\left\{\sum_{x \in \Omega} f(x) \mu(x)-\sum_{x \in \Omega} f(x) \nu(x)\right\} .
$$

- Why? For any $f \in \mathcal{F}$,

$$
|\sum_{x \in \Omega} f(x) \mu(x)-\underbrace{\sum_{x \in \Omega} f(x) \nu(x) \mid}_{\substack{|f(x)| \\ \leq 1}} \leq \sum_{x \in \Omega}| \sum_{x \in \Omega \sim \sim \sim}|\mu(x)-\nu(x)| \cdot \mid
$$

- You will prove the reverse inequality on the homework.

Coupling
joint dishibutions of Random vars (X, Y)

$$
\mathbb{P}[X=x]=\sum_{y \in Y} \mathbb{I}[X=x, Y=y]
$$

- Let μ and ν be two probability measures on Ω_{1} and Ω_{2} respectively.
- A coupling of $\underset{\sim}{\mu}$ and $\underset{\sim}{\nu}$ is a probability measure γ on $\Omega_{1} \times \Omega_{2}$ such that

$$
\begin{aligned}
& \begin{array}{ll}
\gamma\left(A \times \Omega_{2}\right)=\mu(A) & \forall A \subseteq \Omega_{1} \text { and } \\
\gamma\left(\Omega_{1} \times B\right)=\nu(B) \quad \forall B \subseteq \Omega_{2} .
\end{array} \\
& \begin{array}{ll}
\gamma\left(A \times \Omega_{2}\right)=\mu(A) & \forall A \subseteq \Omega_{1} \text { and } \\
\gamma\left(\Omega_{1} \times B\right)=\nu(B) & \forall B \subseteq \Omega_{2} .
\end{array} \\
& X, Y \quad y^{\text {conshot }}(\hat{x}, \hat{y}) \text { joint distribution } \\
& \text { ex: }\left\{\begin{array}{ll}
\mathbb{R}[\hat{X}=x, \hat{Y}=y] \\
=\mathbb{R}[X=x] Q[Y=y]
\end{array}\right\} \begin{array}{l}
\mathbb{Q}[\hat{X}=x]=\mathbb{R}[X=x] \\
\mathbb{R}[\hat{y}=y]=\mathbb{Q}[y=y]
\end{array}
\end{aligned}
$$

Coupling

- Let μ and ν be two probability measures on Ω_{1} and Ω_{2} respectively.
- A coupling of μ and ν is a probability measure γ on $\Omega_{1} \times \Omega_{2}$ such that

$$
\begin{array}{ll}
\gamma\left(A \times \Omega_{2}\right)=\mu(A) & \forall A \subseteq \Omega_{1} \text { and } \\
\gamma\left(\Omega_{1} \times B\right)=\nu(B) \quad \forall B \subseteq \Omega_{2}
\end{array}
$$

- Similarly, a coupling of random variables $X: \Omega_{1}^{\prime} \rightarrow \Omega_{1}$ and $Y: \Omega_{2}^{\prime} \rightarrow \Omega_{2}$ is a pair of random variables $\widehat{X}: \Omega \rightarrow \Omega_{1}$ and $\widehat{Y}: \Omega \rightarrow \Omega_{2}$ defined on a common probability space Ω such that

$$
\begin{array}{ll}
\mathbb{P}[\widehat{X}=x]=\mathbb{P}[X=x] & \forall x \in \Omega_{1} \text { and } \\
\mathbb{P}[\widehat{Y}=y]=\mathbb{P}[Y=y] & \forall y \in \Omega_{2} .
\end{array}
$$

Example: independent coupling

- Let $X \sim \operatorname{Ber}(p)$ and $Y \sim \operatorname{Ber}(q)$ where $0 \leq p \leq q \leq 1$.
- Formally, we can think of $X:[0,1] \rightarrow\{0,1\}$ where $[0,1]$ is equipped with the uniform measure and

$$
X(r)=\left\{\begin{array}{l}
0 \text { if } r \leq 1-p \\
1 \text { if } r>1-p .
\end{array}\right.
$$

- Y admits a similar interpretation.

$$
\begin{aligned}
& Y(r)= \begin{cases}0 & \text { if } r \leqslant 1-q \\
1 & \text { if } r>1-q\end{cases} \\
& Y: \Omega \rightarrow \mathbb{R} \quad \Omega \rightarrow R
\end{aligned}
$$

Example: independent coupling

- Let $X \sim \operatorname{Ber}(p)$ and $Y \sim \operatorname{Ber}(q)$ where $0 \leq p \leq q \leq 1$.
- Formally, we can think of $X:[0,1] \rightarrow\{0,1\}$ where $[0,1]$ is equipped with the uniform measure and

$$
X(r)=\left\{\begin{array}{l}
0 \text { if } r \leq 1-p \\
1 \text { if } r>1-p
\end{array}\right.
$$

- Y admits a similar interpretation.
- An obvious coupling of X and Y is the independent coupling i.e., $\Omega=[0,1] \times[0,1]$ equipped with the uniform measure,
and similarly for \hat{Y} (with r_{1} replaced by r_{2} and p replaced by q).

Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

- $\Omega=[0,1]$ with the uniform measure.
-

$$
\begin{aligned}
& \widehat{X}(r)=\left\{\begin{array}{l}
0 \text { if } r \leq 1-p \\
1 \text { if } r>1-p .
\end{array}\right. \\
& \widehat{Y}(r)=\left\{\begin{array}{l}
0 \text { if } r \leq 1-q \\
1 \text { if } r>1-q .
\end{array}\right.
\end{aligned}
$$

Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

- $\Omega=[0,1]$ with the uniform measure.
-

$$
\begin{aligned}
& \widehat{X}(r)=\left\{\begin{array}{l}
0 \text { if } r \leq 1-p \\
1 \text { if } r>1-p .
\end{array}\right. \\
& \widehat{Y}(r)=\left\{\begin{array}{l}
0 \text { if } r \leq 1-q \\
1 \text { if } r>1-q .
\end{array}\right.
\end{aligned}
$$

- Then,

$$
\mathbb{P}[\widehat{X}=1]=\mathbb{P}[r>1-p]=p=\mathbb{P}[X=1]
$$

and similarly for \widehat{Y}.

Example: monotone coupling
A particularly useful coupling in this case is the monotone coupling.

- $\Omega=[0,1]$ with the uniform measure.

$$
p=1 / 2 \quad q=2 / 3
$$

$$
g_{r} \sim
$$

- $r \leqslant \frac{1}{2}: X=H, Y=H$

$$
\frac{1}{2}<r \leq 2 / 3: x=T, y=H \quad \widehat{Y}(r)=\left\{\begin{array}{l}
0 \text { if } r \leq 1-q \\
1 \text { if } r>1-q .
\end{array}\right.
$$

- Then,
car you use
just one sample
fan $\cup([0,1])$
to generate
both coin

$$
r>2 / 3: x=T, y=T
$$

$$
\mathbb{P}[\widehat{X}=1]=\mathbb{P}[r>1-p]=p=\mathbb{P}[X=1]
$$ both coins

and similarly for \widehat{Y}.

- The name monotone coupling comes from the observation that if $p \leq q$, then $\widehat{X} \leq \widehat{Y}$ determistically. feature $\begin{aligned} & \text { not a bug }\end{aligned}$ not a bug.

An application of monotone coupling

- Let $\left(P_{t}\right)_{t \geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is p.
- Let $\left(Q_{t}\right)_{t \geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is q.

$P_{t} \pm 1$ steps	Q_{t}	± 1 steps	
starts at 0	+1 w.p.p	starts	+1 w.p. q
	at 0	-1 w.p. $1-q$	

An application of monotone coupling

- Let $\left(P_{t}\right)_{t \geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is p.
- Let $\left(Q_{t}\right)_{t \geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is q.
- Then, if $p \leq q$, intuitively, e.q. $q=2 / 3, p=1 / 2$

$$
\begin{aligned}
& \mathbb{P}\left[Q_{t} \leq z\right] \leq \mathbb{P}\left[P_{t} \leq z\right] \quad \forall t \geq 0, z \in \mathbb{Z} . \\
& \text { ecg. } \quad t=100 \\
& \text { P }\left[Q_{100} \leq 0\right] \text { us. } \underline{P}\left[P_{100} \leqslant 0\right]
\end{aligned}
$$

all poss. paths, try to look at prot. of those paths a....

An application of monotone coupling

- Let $\left(P_{t}\right)_{t \geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is p.
- Let $\left(Q_{t}\right)_{t \geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is q.
this statement is
- Then, if $p \leq q$, intuitively,

- Monotone coupling lets us see this directly.

An application of monotone coupling

$$
\hat{x} \leq \hat{y}
$$

- Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of $\operatorname{Ber}(\stackrel{\prime}{p})$ and $\operatorname{Ber}(q)$.
- Let $\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)_{t \geq 1}$ denote id copies of $(\widehat{X}, \widehat{Y})$.

An application of monotone coupling

- Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of $\operatorname{Ber}(p)$ and $\operatorname{Ber}(q)$.
- Let $\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)_{t \geq 1}$ denote iid copies of $(\widehat{X}, \widehat{Y})$.
- Let $\widehat{P}_{t}=\sum_{i=1}^{t}\left(2 \widehat{X}_{i}-1\right)$ and $\widehat{Q}_{t}=\sum_{i=1}^{t}\left(2 \widehat{Y}_{i}-1\right)$.

$$
\begin{gathered}
\text { just to go } \\
\text { fram } 0 / 1 \\
\text { to } \pm 1
\end{gathered}
$$

- Then, by construction, $\widehat{P}_{t} \leq \widehat{Q}_{t}$ for all t.

An application of monotone coupling

- Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of $\operatorname{Ber}(p)$ and $\operatorname{Ber}(q)$.
- Let $\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)_{t \geq 1}$ denote id copies of $(\widehat{X}, \widehat{Y})$.
- Let $\widehat{P}_{t}=\sum_{i=1}^{t}\left(2 \widehat{X}_{i}-1\right)$ and $\widehat{Q}_{t}=\sum_{i=1}^{t}\left(2 \widehat{Y}_{i}-1\right)$.
- Then, by construction, $\widehat{P}_{t} \leq \widehat{Q}_{t}$ for all t.
- Moreover, $P_{t} \sim \widehat{P}_{t}$ and $Q_{t} \sim \widehat{Q}_{t}$ for all t.

$$
\begin{aligned}
\underline{\mathbb{P}}\left[\underline{P}_{t} \leqslant z\right] & \left.=\mathbb{P}\left[\hat{p}_{t} \leqslant z\right]\right\} \text { monotone } \\
& \leq \mathbb{P}\left[\hat{Q}_{t} \leqslant z\right] \text { coupling. } \\
& =\mathbb{P}\left[Q_{t} \leqslant z\right] .
\end{aligned}
$$

An application of monotone coupling

- Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of $\operatorname{Ber}(p)$ and $\operatorname{Ber}(q)$.
- Let $\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)_{t \geq 1}$ denote iid copies of $(\widehat{X}, \widehat{Y})$.
- Let $\widehat{P}_{t}=\sum_{i=1}^{t}\left(2 \widehat{X}_{i}-1\right)$ and $\widehat{Q}_{t}=\sum_{i=1}^{t}\left(2 \widehat{Y}_{i}-1\right)$.
- Then, by construction, $\widehat{P}_{t} \leq \widehat{Q}_{t}$ for all t.
- Moreover, $P_{t} \sim \widehat{P}_{t}$ and $Q_{t} \sim \widehat{Q}_{t}$ for all t.
- So, for any $z \in \mathbb{Z}$ and any $t \geq 0$,

$$
\mathbb{P}\left[Q_{t} \leq z\right]=\mathbb{P}\left[\widehat{Q}_{t} \leq z\right] \leq \mathbb{P}\left[\widehat{P}_{t} \leq z\right]=\mathbb{P}\left[P_{t}=z\right]
$$

Coupling and total variation

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that

$$
\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\} .
$$

Coupling and total variation

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that

$$
\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\} .
$$

- Example: let $\mu=\operatorname{Ber}(p)$ and $\nu=\operatorname{Ber}(q)$ with $0 \leq p \leq q \leq 1$.
- Then, by direct computation,

$$
\operatorname{TV}(\operatorname{Ber}(p), \operatorname{Ber}(q))=\frac{1}{2}(|q-p|+|1-q-1+p|)=q-p
$$

Coupling and total variation

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that

$$
\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\} .
$$

- Example: let $\mu=\operatorname{Ber}(p)$ and $\nu=\operatorname{Ber}(q)$ with $0 \leq p \leq q \leq 1$.
- Then, by direct computation,

$$
\operatorname{TV}(\operatorname{Ber}(p), \operatorname{Ber}(q))=\frac{1}{2}(|q-p|+|1-q-1+p|)=q-p
$$

- For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$
\mathbb{P}[\widehat{X} \neq \widehat{Y}]=\mathbb{P}[1-q \leq r \leq 1-p]=q-p .
$$

Coupling and total variation

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that

$$
\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\} .
$$

- Example: let $\mu=\operatorname{Ber}(p)$ and $\nu=\operatorname{Ber}(q)$ with $0 \leq p \leq q \leq 1$.
- Then, by direct computation,

$$
\operatorname{TV}(\operatorname{Ber}(p), \operatorname{Ber}(q))=\frac{1}{2}(|q-p|+|1-q-1+p|)=q-p
$$

- For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$
\mathbb{P}[\widehat{X} \neq \widehat{Y}]=\mathbb{P}[1-q \leq r \leq 1-p]=q-p .
$$

- The above characterization shows that the monotone coupling is an optimal coupling.

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy direction: \leq. Why?

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$.

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\mu(A)-\nu(A)=\mathbb{P}[X \in A]-\mathbb{P}[Y \in A]
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
\mu(A)-\nu(A) & =\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\mathbb{P}[X \in A]-\mathbb{P}[X \in A, Y \in A]-\mathbb{P}[X \notin A, Y \in A]
\end{aligned}
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
\mu(A)-\nu(A) & =\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\mathbb{P}[X \in A]-\mathbb{P}[X \in A, Y \in A]-\mathbb{P}[X \notin A, Y \in A] \\
& =\mathbb{P}[X \in A, Y \notin A]-\mathbb{P}[X \notin A, Y \in A]
\end{aligned}
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
\mu(A)-\nu(A) & =\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\mathbb{P}[X \in A]-\mathbb{P}[X \in A, Y \in A]-\mathbb{P}[X \notin A, Y \in A] \\
& =\mathbb{P}[X \in A, Y \notin A]-\mathbb{P}[X \notin A, Y \in A] \\
& \leq \mathbb{P}[X \in A, Y \notin A]
\end{aligned}
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
\mu(A)-\nu(A) & =\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\mathbb{P}[X \in A]-\mathbb{P}[X \in A, Y \in A]-\mathbb{P}[X \notin A, Y \in A] \\
& =\mathbb{P}[X \in A, Y \notin A]-\mathbb{P}[X \notin A, Y \in A] \\
& \leq \mathbb{P}[X \in A, Y \notin A] \\
& \leq \mathbb{P}[X \neq Y] .
\end{aligned}
$$

- The reverse inequality is a starred problem on HW7.

