
STATS 217: Introduction to Stochastic Processes I

Lecture 17
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Total variation distance

Let µ and ν be two probability distributions on Ω.

The total variation distance between them, denoted by TV(µ, ν), is defined
by

TV(µ, ν) := max
A⊆Ω
|µ(A)− ν(A)|.

On the homework, you will show that

TV(µ, ν) =
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Note that TV(µ, ν) is a metric on the set of probability measures on Ω.
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Total variation distance is a metric

TV(µ, ν) ≥ 0 and TV(µ, ν) = TV(ν, µ).

If TV(µ, ν) = 0, then |µ(x)− ν(x)| = 0 for all x ∈ Ω so that µ ≡ ν.

Finally, TV satisfies the triangle inequality: for probability measures µ, ν, η on
Ω, TV(µ, ν) ≤ TV(µ, η) + TV(η, ν).

Indeed,

2 TV(µ, ν) =
∑
x∈Ω

|µ(x)− ν(x)|

=
∑
x∈Ω

|µ(x)− η(x) + η(x)− ν(x)|

≤
∑
x∈Ω

|µ(x)− η(x)|+
∑
x∈Ω

|η(x)− ν(x)|

= 2 TV(µ, η) + 2 TV(η, ν).
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Dual characterization of total variation distance

Let µ, ν be probability measures on Ω. Let F denote the collection of all
functions f : Ω→ R satisfying maxx∈Ω |f (x)| ≤ 1.

Then,

TV(µ, ν) =
1

2
sup
f∈F

{∑
x∈Ω

f (x)µ(x)−
∑
x∈Ω

f (x)ν(x)

}
.

Why? For any f ∈ F ,

|
∑
x∈Ω

f (x)µ(x)−
∑
x∈Ω

f (x)ν(x)| ≤
∑
x∈Ω

|f (x)||µ(x)− ν(x)|

≤
∑
x∈Ω

|µ(x)− ν(x)|.

You will prove the reverse inequality on the homework.
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Coupling

Let µ and ν be two probability measures on Ω1 and Ω2 respectively.

A coupling of µ and ν is a probability measure γ on Ω1 × Ω2 such that

γ(A× Ω2) = µ(A) ∀A ⊆ Ω1 and

γ(Ω1 × B) = ν(B) ∀B ⊆ Ω2.

Similarly, a coupling of random variables X : Ω′1 → Ω1 and Y : Ω′2 → Ω2 is a

pair of random variables X̂ : Ω→ Ω1 and Ŷ : Ω→ Ω2 defined on a common
probability space Ω such that

P[X̂ = x ] = P[X = x ] ∀x ∈ Ω1 and

P[Ŷ = y ] = P[Y = y ] ∀y ∈ Ω2.
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Example: independent coupling

Let X ∼ Ber(p) and Y ∼ Ber(q) where 0 ≤ p ≤ q ≤ 1.

Formally, we can think of X : [0, 1]→ {0, 1} where [0, 1] is equipped with the
uniform measure and

X (r) =

{
0 if r ≤ 1− p

1 if r > 1− p.

Y admits a similar interpretation.

An obvious coupling of X and Y is the independent coupling i.e.,
Ω = [0, 1]× [0, 1] equipped with the uniform measure,

X̂ (r1, r2) =

{
0 if r1 ≤ 1− p

1 if r1 ≥ 1− p,

and similarly for Ŷ (with r1 replaced by r2 and p replaced by q).

Lecture 17 STATS 217 6 / 11



Example: independent coupling

Let X ∼ Ber(p) and Y ∼ Ber(q) where 0 ≤ p ≤ q ≤ 1.

Formally, we can think of X : [0, 1]→ {0, 1} where [0, 1] is equipped with the
uniform measure and

X (r) =

{
0 if r ≤ 1− p

1 if r > 1− p.

Y admits a similar interpretation.

An obvious coupling of X and Y is the independent coupling i.e.,
Ω = [0, 1]× [0, 1] equipped with the uniform measure,

X̂ (r1, r2) =

{
0 if r1 ≤ 1− p

1 if r1 ≥ 1− p,
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Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

Ω = [0, 1] with the uniform measure.

X̂ (r) =

{
0 if r ≤ 1− p

1 if r > 1− p.

Ŷ (r) =

{
0 if r ≤ 1− q

1 if r > 1− q.

Then,
P[X̂ = 1] = P[r > 1− p] = p = P[X = 1]

and similarly for Ŷ .

The name monotone coupling comes from the observation that if p ≤ q, then

X̂ ≤ Ŷ determistically.
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An application of monotone coupling

Let (Pt)t≥0 denote a simple random walk starting from 0 where the
probability of taking a step to the right is p.

Let (Qt)t≥0 denote a simple random walk starting from 0 where the
probability of taking a step to the right is q.

Then, if p ≤ q, intuitively,

P[Qt ≤ z ] ≤ P[Pt ≤ z ] ∀t ≥ 0, z ∈ Z.

Monotone coupling lets us see this directly.
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An application of monotone coupling

Let (X̂ , Ŷ ) denote the monotone coupling of Ber(p) and Ber(q).

Let (X̂t , Ŷt)t≥1 denote iid copies of (X̂ , Ŷ ).

Let P̂t =
∑t

i=1(2X̂i − 1) and Q̂t =
∑t

i=1(2Ŷi − 1).

Then, by construction, P̂t ≤ Q̂t for all t.

Moreover, Pt ∼ P̂t and Qt ∼ Q̂t for all t.

So, for any z ∈ Z and any t ≥ 0,

P[Qt ≤ z ] = P[Q̂t ≤ z ] ≤ P[P̂t ≤ z ] = P[Pt = z ].
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Let (X̂ , Ŷ ) denote the monotone coupling of Ber(p) and Ber(q).
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Coupling and total variation

Let µ and ν be two probability distributions on Ω.

The coupling lemma asserts that

TV(µ, ν) = inf{P[X 6= Y ] : (X ,Y ) is a coupling of µ and ν}.

Example: let µ = Ber(p) and ν = Ber(q) with 0 ≤ p ≤ q ≤ 1.

Then, by direct computation,

TV(Ber(p),Ber(q)) =
1

2
(|q − p|+ |1− q − 1 + p|) = q − p.

For the monotone coupling (X̂ , Ŷ ), we have

P[X̂ 6= Ŷ ] = P[1− q ≤ r ≤ 1− p] = q − p.

The above characterization shows that the monotone coupling is an optimal
coupling.
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Coupling and total variation

TV(µ, ν) = inf{P[X 6= Y ] : (X ,Y ) is a coupling of µ and ν}.

Easy direction: ≤. Why?

Let (X ,Y ) be any coupling of µ, ν. Let A ⊆ Ω. Then,

µ(A)− ν(A) = P[X ∈ A]− P[Y ∈ A]

= P[X ∈ A]− P[X ∈ A,Y ∈ A]− P[X /∈ A,Y ∈ A]

= P[X ∈ A,Y /∈ A]− P[X /∈ A,Y ∈ A]

≤ P[X ∈ A,Y /∈ A]

≤ P[X 6= Y ].

The reverse inequality is a starred problem on HW7.
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