STATS 217: Introduction to Stochastic Processes I

Lecture 18

Coupling and total variation

- Let μ and ν be two probability distributions on $\Omega.$
- The coupling lemma asserts that

 $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$

- **Example**: let $\mu = Ber(p)$ and $\nu = Ber(q)$ with $0 \le p \le q \le 1$.
- Then, by direct computation,

$$\mathsf{TV}(\mathsf{Ber}(p),\mathsf{Ber}(q)) = rac{1}{2}(|q-p|+|1-q-1+p|) = q-p.$$

• For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$\mathbb{P}[\widehat{X}
eq \widehat{Y}] = \mathbb{P}[1 - q \le r \le 1 - p] = q - p.$$

• The above characterization shows that the monotone coupling is an **optimal coupling**.

Coupling and total variation

- $\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy/useful direction: \leq . Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$. Then,

$$\begin{split} \mu(A) - \nu(A) &= \mathbb{P}[X \in A] - \mathbb{P}[Y \in A] \\ &= \mathbb{P}[X \in A] - \mathbb{P}[X \in A, Y \in A] - \mathbb{P}[X \notin A, Y \in A] \\ &= \mathbb{P}[X \in A, Y \notin A] - \mathbb{P}[X \notin A, Y \in A] \\ &\leq \mathbb{P}[X \in A, Y \notin A] \\ &\leq \mathbb{P}[X \neq Y]. \end{split}$$

• The reverse inequality is a starred problem on HW7.

• In our discussion of Poisson random variables, we frequently used the (informal) approximation

$$\mathsf{Pois}(\lambda) \approx X_1 + \cdots + X_n,$$

where X_1, \ldots, X_n are i.i.d. Bernoulli random variables with mean λ/n .

- Now, we have the machinery to make this precise.
- Let X_1, \ldots, X_n be independent Bernoulli random variables with means p_1, \ldots, p_n .
- In other words, for each X_i , $\mathbb{P}[X_i = 1] = p_i$ and $\mathbb{P}[X_i = 0] = (1 p_i)$.
- Let $S_n = X_1 + \cdots + X_n$.

- Let $\lambda_i = -\log(1-p_i)$. Equivalently, $e^{-\lambda_i} = (1-p_i)$.
- Let $\lambda = \lambda_1 + \cdots + \lambda_n$.
- We will show that

$$\mathsf{TV}(S_n,\mathsf{Pois}(\lambda)) \leq \frac{1}{2}\sum_{i=1}^n \lambda_i^2.$$

- **Example**: $\Lambda > 0$ is fixed, *n* is large, $p_i = \Lambda/n$ for all i = 1, ..., n.
- Then, $\lambda_i = \Lambda/n + O(\Lambda^2/n^2)$, $\lambda = \Lambda + O(\Lambda^2/n)$.
- On the homework, you will show that $TV(Pois(\mu), Pois(\nu)) \leq |\nu \mu|$.
- Then, by the triangle inequality,

$$\begin{split} \mathsf{TV}(S_n,\mathsf{Pois}(\Lambda)) &\leq \mathsf{TV}(S_n,\mathsf{Pois}(\lambda)) + \mathsf{TV}(\mathsf{Pois}(\lambda),\mathsf{Pois}(\Lambda)) \\ &\leq O(\Lambda^2/n) + O(\Lambda^2/n) \\ &\leq O(\Lambda^2/n), \end{split}$$

which justifies our approximation from before.

We now show that

$$\mathsf{TV}(S_n,\mathsf{Pois}(\lambda)) \leq rac{1}{2}\sum_{i=1}^n \lambda_i^2.$$

• Let us first prove this for n = 1. Let $\lambda = -\log(1-p)$. We want to show:

$$\mathsf{TV}(\mathsf{Ber}(p),\mathsf{Pois}(\lambda)) \leq \frac{1}{2}\lambda^2.$$

• By the coupling lemma, it suffices to exhibit a coupling (\hat{X}, \hat{Y}) of Ber(p) and Pois (λ) such that

$$\mathbb{P}[\widehat{X}
eq \widehat{Y}] \leq rac{1}{2}\lambda^2.$$

- Here is such a coupling: Generate $Z \sim \text{Pois}(\lambda)$. Then, set $\widehat{Y} = Z$ and $\widehat{X} = \min\{Z, 1\}$.
- Clearly \widehat{Y} has the correct marginal distribution. As for \widehat{X} , note that

$$\mathbb{P}[\widehat{X}=0]=\mathbb{P}[Z=0]=e^{-\lambda}=(1-p)=\mathbb{P}[\mathsf{Ber}(p)=0].$$

Moreover,

$$\mathbb{P}[\widehat{X} \neq \widehat{Y}] = \mathbb{P}[Z \ge 2]$$
$$= e^{-\lambda} \sum_{j \ge 2} \frac{\lambda^j}{j!}$$
$$\leq \frac{\lambda^2}{2} \sum_{j \ge 0} e^{-\lambda} \frac{\lambda^j}{j!}$$
$$= \frac{\lambda^2}{2}.$$

- At this point, we are almost done.
- Let $(\widehat{X}_i, \widehat{Y}_i)$ be a coupling of $Ber(p_i)$ and $Pois(\lambda_i)$ as above.
- Let $(\widehat{X}_1, \widehat{Y}_1), \ldots, (\widehat{X}_n, \widehat{Y}_n)$ be independent copies of this coupling.
- Then, $S_n \sim \widehat{X}_1 + \cdots + \widehat{X}_n$ and $\mathsf{Pois}(\lambda) \sim \widehat{Y}_1 + \cdots + \widehat{Y}_n$.
- Moreover, by the coupling lemma and our previous calculation

$$\begin{aligned} \mathsf{TV}(S_n,\mathsf{Pois}(\lambda)) &\leq \mathbb{P}[\widehat{X}_1 + \ldots \widehat{X}_n \neq \widehat{Y}_1 + \cdots + \widehat{Y}_n] \\ &\leq \mathbb{P}[\widehat{X}_1 \neq \widehat{Y}_1] + \cdots + \mathbb{P}[\widehat{X}_n \neq \widehat{Y}_n] \\ &\leq \frac{\lambda_1^2}{2} + \cdots + \frac{\lambda_n^2}{2}. \end{aligned}$$

Random mapping representation of Markov chains

- We have often specified transitions of Markov chains in words. For instance, for the symmetric simple random walk, instead of writing down the transition matrix, we have used a simple description like: at each step, toss an independent fair coin. If the coin lands heads, move one step right. Else, move one step left.
- We can formalize this by using the random mapping representation of a transition matrix P on the state space S. This is simply a function f : S × Λ → S along with a Λ-valued random variable Z which satisfies

$$\mathbb{P}[f(x,Z)=y]=P_{x,y}.$$

 For instance, in the case of the symmetric simple random walk, we can take Λ = {H, T}, Z is a random variable which is H with probability 1/2 and T otherwise, and f(x, H) = x + 1, f(x, T) = x - 1.

Random mapping representations of Markov chains

- In fact, every transition matrix on a finite state space $\{1, \ldots, n\}$ has a random mapping representation.
- Indeed, we can take $\Lambda = [0, 1]$, Z is uniformly distributed on [0, 1] and

$$f(i,z) = j \iff \sum_{\ell=1}^{j-1} P_{i,\ell} \le z \le \sum_{\ell=1}^{j} P_{i,\ell}.$$