STATS 217: Introduction to Stochastic Processes | J

Lecture 18
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Coupling and total variation

@ Let 1 and v be two probability distributions on .
@ The coupling lemma asserts that

TV(u,v) = inf{P[X # Y] : (X, Y) is a coupling of y and v}.

Example: let = Ber(p) and v = Ber(q) with 0 < p < g < 1.

Then, by direct computation,

TV(Ber(p), Ber(q)) = %(Iq —pl+ll-g-1+p))=qg—p.

For the monotone coupling ()A(, \A/) we have

PIX#Y]=P[l-qg<r<1l-pl=qg-p.

@ The above characterization shows that the monotone coupling is an optimal
coupling.
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Coupling and total variation

e TV(u,v) =inf{P[X # Y]: (X, Y) is a coupling of y and v}.
o Easy/useful direction: <. Why?
o Let (X, Y) be any coupling of p,v. Let A C Q. Then,

w(A) —v(A) =P[X € A] —P[Y € A
—PXcA—-PIXcAYEcA-PX&AY cA
=PXeAY A -PX¢gAY €A
<PXeAY¢A
<P[X #Y].

@ The reverse inequality is a starred problem on HW?7.
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Poisson approximation

@ In our discussion of Poisson random variables, we frequently used the
(informal) approximation

Pois(A) = X1 + - - + X,,

where Xi,..., X, are i.i.d. Bernoulli random variables with mean A\/n.
@ Now, we have the machinery to make this precise.
o Let Xi,..., X, be independent Bernoulli random variables with means
P1;-- -, Pn-
@ In other words, for each X;, P[X; = 1] = p; and P[X; = 0] = (1 — p;).
o letS,=Xi+---+ X,.
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Poisson approximation

o Let \; = —log(1 — p;). Equivalently, e=* = (1 — p;).
o let A=A+ 4+ A,
@ We will show that

_ 1
TV(Sy, Pois()) < 5 Zl A2,

Example: A > 0 is fixed, nis large, pj = A/nforalli=1,... n.
Then, A; = A/n+ O(A*/n?), A = A+ O(N?/n).

On the homework, you will show that TV(Pois(u), Pois(v)) < |v — py.
Then, by the triangle inequality,

TV(S,, Pois(A)) < TV(S,, Pois(A)) + TV(Pois(\), Pois(A))
< O(A?/n) 4 O(N?/n)
< O(N*/n),

which justifies our approximation from before.
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Poisson approximation

@ We now show that

3

TV(S,, Pois()\)) < 22,

i=1

N —

@ Let us first prove this for n = 1. Let A = —log(1 — p). We want to show:

TV(Ber(p), Pois(\)) < Z\°.

N =

@ By the coupling lemma, it suffices to exhibit a coupling ()A(, \A’) of Ber(p) and
Pois(A) such that

P[X # Y] < %)\2.
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Poisson approximation

o Here is such a coupling: Generate Z ~ Pois()). Then, set ¥ = Z and

o~

X =min{Z,1}.

o Clearly Y has the correct marginal distribution. As for X, note that

P[X =0] =P[Z=0]=e > = (1— p) = P[Ber(p) = 0].

@ Moreover,
P[X # Y] =P[Z > 2]
N
A A ~
—e Zﬂ
j=2
2 J
< A— e*’\)\
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Poisson approximation

At this point, we are almost done.

Let (X;, Y;) be a coupling of Ber(p;) and Pois();) as above.

Let ()A(l, \A/l), ey ()A<,,, \A/,,) be independent copies of this coupling.
Then, S, N)A<1—|—-~-—|—)A(,, and Pois(\) ~ \A/l—&--u—i— \A/,,.

@ Moreover, by the coupling lemma and our previous calculation

TV(Sp, Pois(\)) < P[Xy+ ... Xp # Yo+ -+ Y]
<P[Xy # Vi) + -+ P[X, # Y]
A Af
<
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Random mapping representation of Markov chains

@ We have often specified transitions of Markov chains in words. For instance,
for the symmetric simple random walk, instead of writing down the transition
matrix, we have used a simple description like: at each step, toss an
independent fair coin. If the coin lands heads, move one step right. Else,
move one step left.

@ We can formalize this by using the random mapping representation of a
transition matrix P on the state space S. This is simply a function
f:SxNAN— S along with a A-valued random variable Z which satisfies

Plf(x,Z) = y] = Px,.
@ For instance, in the case of the symmetric simple random walk, we can take

A={H, T}, Zis a random variable which is H with probability 1/2 and T
otherwise, and f(x,H) =x+1, f(x,T)=x—1.
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Random mapping representations of Markov chains

@ In fact, every transition matrix on a finite state space {1,...,n} has a
random mapping representation.

@ Indeed, we can take A = [0, 1], Z is uniformly distributed on [0, 1] and

Jj—1 J
f(i,z) :_j i ZP'.’Z S z S ZP’J'
=1 (=1
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