
STATS 217: Introduction to Stochastic Processes I

Lecture 18
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Coupling and total variation

Let µ and ν be two probability distributions on Ω.

The coupling lemma asserts that

TV(µ, ν) = inf{P[X 6= Y ] : (X ,Y ) is a coupling of µ and ν}.

Example: let µ = Ber(p) and ν = Ber(q) with 0 ≤ p ≤ q ≤ 1.

Then, by direct computation,

TV(Ber(p),Ber(q)) =
1

2
(|q − p|+ |1− q − 1 + p|) = q − p.

For the monotone coupling (X̂ , Ŷ ), we have

P[X̂ 6= Ŷ ] = P[1− q ≤ r ≤ 1− p] = q − p.

The above characterization shows that the monotone coupling is an optimal
coupling.
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Coupling and total variation

TV(µ, ν) = inf{P[X 6= Y ] : (X ,Y ) is a coupling of µ and ν}.

Easy/useful direction: ≤. Why?

Let (X ,Y ) be any coupling of µ, ν. Let A ⊆ Ω. Then,

µ(A)− ν(A) = P[X ∈ A]− P[Y ∈ A]

= P[X ∈ A]− P[X ∈ A,Y ∈ A]− P[X /∈ A,Y ∈ A]

= P[X ∈ A,Y /∈ A]− P[X /∈ A,Y ∈ A]

≤ P[X ∈ A,Y /∈ A]

≤ P[X 6= Y ].

The reverse inequality is a starred problem on HW7.
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Poisson approximation

In our discussion of Poisson random variables, we frequently used the
(informal) approximation

Pois(λ) ≈ X1 + · · ·+ Xn,

where X1, . . . ,Xn are i.i.d. Bernoulli random variables with mean λ/n.

Now, we have the machinery to make this precise.

Let X1, . . . ,Xn be independent Bernoulli random variables with means
p1, . . . , pn.

In other words, for each Xi , P[Xi = 1] = pi and P[Xi = 0] = (1− pi ).

Let Sn = X1 + · · ·+ Xn.
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Poisson approximation

Let λi = − log(1− pi ). Equivalently, e−λi = (1− pi ).

Let λ = λ1 + · · ·+ λn.

We will show that

TV(Sn,Pois(λ)) ≤ 1

2

n∑
i=1

λ2i .

Example: Λ > 0 is fixed, n is large, pi = Λ/n for all i = 1, . . . , n.

Then, λi = Λ/n + O(Λ2/n2), λ = Λ + O(Λ2/n).

On the homework, you will show that TV(Pois(µ),Pois(ν)) ≤ |ν − µ|.
Then, by the triangle inequality,

TV(Sn,Pois(Λ)) ≤ TV(Sn,Pois(λ)) + TV(Pois(λ),Pois(Λ))

≤ O(Λ2/n) + O(Λ2/n)

≤ O(Λ2/n),

which justifies our approximation from before.
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Poisson approximation

We now show that

TV(Sn,Pois(λ)) ≤ 1

2

n∑
i=1

λ2i .

Let us first prove this for n = 1. Let λ = − log(1− p). We want to show:

TV(Ber(p),Pois(λ)) ≤ 1

2
λ2.

By the coupling lemma, it suffices to exhibit a coupling (X̂ , Ŷ ) of Ber(p) and
Pois(λ) such that

P[X̂ 6= Ŷ ] ≤ 1

2
λ2.
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Poisson approximation

Here is such a coupling: Generate Z ∼ Pois(λ). Then, set Ŷ = Z and

X̂ = min{Z , 1}.
Clearly Ŷ has the correct marginal distribution. As for X̂ , note that

P[X̂ = 0] = P[Z = 0] = e−λ = (1− p) = P[Ber(p) = 0].

Moreover,

P[X̂ 6= Ŷ ] = P[Z ≥ 2]

= e−λ
∑
j≥2

λj

j!

≤ λ2

2

∑
j≥0

e−λ
λj

j!

=
λ2

2
.
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Poisson approximation

At this point, we are almost done.

Let (X̂i , Ŷi ) be a coupling of Ber(pi ) and Pois(λi ) as above.

Let (X̂1, Ŷ1), . . . , (X̂n, Ŷn) be independent copies of this coupling.

Then, Sn ∼ X̂1 + · · ·+ X̂n and Pois(λ) ∼ Ŷ1 + · · ·+ Ŷn.

Moreover, by the coupling lemma and our previous calculation

TV(Sn,Pois(λ)) ≤ P[X̂1 + . . . X̂n 6= Ŷ1 + · · ·+ Ŷn]

≤ P[X̂1 6= Ŷ1] + · · ·+ P[X̂n 6= Ŷn]

≤ λ21
2

+ · · ·+ λ2n
2
.
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Random mapping representation of Markov chains

We have often specified transitions of Markov chains in words. For instance,
for the symmetric simple random walk, instead of writing down the transition
matrix, we have used a simple description like: at each step, toss an
independent fair coin. If the coin lands heads, move one step right. Else,
move one step left.

We can formalize this by using the random mapping representation of a
transition matrix P on the state space S . This is simply a function
f : S × Λ→ S along with a Λ-valued random variable Z which satisfies

P[f (x ,Z ) = y ] = Px,y .

For instance, in the case of the symmetric simple random walk, we can take
Λ = {H,T}, Z is a random variable which is H with probability 1/2 and T
otherwise, and f (x ,H) = x + 1, f (x ,T ) = x − 1.
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Random mapping representations of Markov chains

In fact, every transition matrix on a finite state space {1, . . . , n} has a
random mapping representation.

Indeed, we can take Λ = [0, 1], Z is uniformly distributed on [0, 1] and

f (i , z) = j ⇐⇒
j−1∑
`=1

Pi,` ≤ z ≤
j∑
`=1

Pi,`.
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