STATS 217: Introduction to Stochastic Processes I

Lecture 18

Coupling and total variation

$$
T V(\mu, \nu)=\frac{1}{2} \sum_{x}^{1} \bar{x}_{-\nu}^{\prime} \mu(x)
$$

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that (very fordamental/useful).

$$
\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\}
$$

extreme case: $\mu=\nu$

$$
T v(\mu, \mu)=0
$$

a coupling of $\mu \otimes \mu$ is

$$
\text { just }(x, x)
$$

where $x \sim \mu$.
last time:

$$
\begin{aligned}
& \mu=\operatorname{Ber}(p) \\
& \nu=\operatorname{Ber}(q)
\end{aligned}
$$

\rightarrow ind. coupling $\frac{P_{[x+1}}{[x \neq]}$
\hookrightarrow monotone coupling $\mathbb{C}\left[x_{z} y\right]$
not on

$$
c_{1} \ldots
$$

* if you give me any coupling \rightarrow upper bound (this is what we will use for
* if you can compute

TV, 'test' stars quality of coup pliny. egg. Poisson
approx.

Coupling and total variation

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that

$$
\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\} .
$$

- Example: let $\mu=\operatorname{Ber}(p)$ and $\nu=\operatorname{Ber}(q)$ with $0 \leq p \leq q \leq 1$.
- Then, by direct computation,

$$
\begin{aligned}
& \quad \operatorname{TV}(\operatorname{Ber}(p), \operatorname{Ber}(q))=\frac{1}{2}(|q-p|+|1-q-1+p|)=\bar{q}-p . \\
& \frac{1}{2}|\mu(0)-\nu(0)| \\
& \\
& +\frac{1}{2}|\mu(1)-\nu(1)|
\end{aligned}
$$

Coupling and total variation

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that

$$
\mathrm{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\}
$$

(intuitively, same as min)

- Example: let $\mu=\operatorname{Ber}(p)$ and $\nu=\operatorname{Ber}(q)$ with $0 \leq p \leq q \leq 1$.
- Then, by direct computation,

$$
\operatorname{TV}(\operatorname{Ber}(p), \operatorname{Ber}(q))=\frac{1}{2}(|q-p|+|1-q-1+p|)=q-p
$$

- For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$
\begin{aligned}
& \mathbb{P}[\widehat{X} \neq \widehat{Y}]=\mathbb{P}[1-q \leq r \leq 1-p]=q-p \\
& \hat{x}=\hat{y}=0 \quad \text { dis. } \hat{x}=\hat{y}=1
\end{aligned}
$$

$$
\operatorname{con}_{1} \sim \sim_{1-q}^{1-p}
$$

\Rightarrow monotone coupling is optimal.

Coupling and total variation

- Let μ and ν be two probability distributions on Ω.
- The coupling lemma asserts that

$$
\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu \text { and } \nu\} .
$$

- Example: let $\mu=\operatorname{Ber}(p)$ and $\nu=\operatorname{Ber}(q)$ with $0 \leq p \leq q \leq 1$.
- Then, by direct computation,

$$
\operatorname{TV}(\operatorname{Ber}(p), \operatorname{Ber}(q))=\frac{1}{2}(|q-p|+|1-q-1+p|)=q-p
$$

- For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$
\mathbb{P}[\widehat{X} \neq \widehat{Y}]=\mathbb{P}[1-q \leq r \leq 1-p]=q-p .
$$

- The above characterization shows that the monotone coupling is an optimal coupling.

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\overline{\inf }\{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy/useful direction: \leq. Why?
it suffices to show that for any coupling (x, y) of $\mu * 0$, we have

$$
T V(\mu, \nu) \leq \underline{\mathbb{P}}[x \neq Y]
$$

\& now take inf on both sides oUR all couplings

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy/useful direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$.

$$
T V(\mu, \nu)=\sup _{A \subseteq \Omega}|\mu(A)-D(A)|
$$

enough to show that given $A \subseteq \Omega$

$$
|\mu(A)-\nu(A)| \leqslant \operatorname{Pr}(X \neq Y)
$$

and now, take max over A on both sides

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy/useful direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
x \sim \mu
$$

$$
\underline{\underline{\mu(A)}}-\sim_{\sim}^{\nu(A)}=\underline{\mathbb{P}[X \in A]}-\mathbb{P}[Y \in A]
$$

$$
Y \sim \nu
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy/useful direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
& \mu(A)-\nu(A)=\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\underbrace{\mathbb{P}[X \in A]}-\underline{\mathbb{P}[X \in A, Y \in A]}-\underline{\mathbb{P}[X \notin A, Y \in A]} \\
& \mathbb{I}[x \in A, Y \in A \cdot]+\mathbb{I}[x \in A, Y \notin A] \text {. }
\end{aligned}
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy/useful direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
\mu(A)-\nu(A) & =\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\mathbb{P}[X \in A]-\mathbb{P}[X \in A, Y \in A]-\mathbb{P}[X \notin A, Y \in A] \\
& =\mathbb{P}[X \in A, Y \notin A]-\mathbb{P}[X \notin A, Y \in A] \\
& \leq \mathbb{\mathbb { R }}[X \in A, Y \notin A] \\
& \leq \mathbb{P}[X \neq Y] \quad
\end{aligned}
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy/useful direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
\mu(A)-\nu(A) & =\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\mathbb{P}[X \in A]-\mathbb{P}[X \in A, Y \in A]-\mathbb{P}[X \notin A, Y \in A] \\
& =\mathbb{P}[X \in A, Y \notin A]-\mathbb{P}[X \notin A, Y \in A] \\
& \leq \mathbb{P}[X \in A, Y \notin A]
\end{aligned}
$$

Coupling and total variation

- $\operatorname{TV}(\mu, \nu)=\inf \{\mathbb{P}[X \neq Y]:(X, Y)$ is a coupling of μ and $\nu\}$.
- Easy/useful direction: \leq. Why?
- Let (X, Y) be any coupling of μ, ν. Let $A \subseteq \Omega$. Then,

$$
\begin{aligned}
\mu(A)-\nu(A) & =\mathbb{P}[X \in A]-\mathbb{P}[Y \in A] \\
& =\mathbb{P}[X \in A]-\mathbb{P}[X \in A, Y \in A]-\mathbb{P}[X \notin A, Y \in A] \\
& =\mathbb{P}[X \in A, Y \notin A]-\mathbb{P}[X \notin A, Y \in A] \\
& \leq \mathbb{P}[X \in A, Y \notin A] \\
& \leq \mathbb{P}[X \neq Y] .
\end{aligned}
$$

- The reverse inequality is a starred problem on HW7.

Rough idea: $\quad x \in \Omega$, can only get to agree on x
wop. $\min \{\mu(x), \nu(x)\}$

Poisson approximation
 合合
 $T V=1$

 $T U=0$

- In our discussion of Poisson random variables, we frequently used the (informal) approximation

$$
\operatorname{Pois}(\lambda) \approx x_{1}+\cdots+x_{n}, \quad \frac{\lambda>0 \quad \text { plxec }}{-} \quad \text { large }
$$

where X_{1}, \ldots, X_{n} are i.i.d. Bernoulli random variables with mean λ / n.

- Now, we have the machinery to make this precise.

Poisson approximation

- In our discussion of Poisson random variables, we frequently used the (informal) approximation

$$
\operatorname{Pois}(\lambda) \approx X_{1}+\cdots+X_{n}
$$

where X_{1}, \ldots, X_{n} are i.i.d. Bernoulli random variables with mean λ / n.

- Now, we have the machinery to make this precise.
- Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with means p_{1}, \ldots, p_{n}.
- In other words, for each $X_{i}, \mathbb{P}\left[X_{i}=1\right]=p_{i}$ and $\mathbb{P}\left[X_{i}=0\right]=\left(1-p_{i}\right)$.

Poisson approximation

- In our discussion of Poisson random variables, we frequently used the (informal) approximation

$$
\operatorname{Pois}(\lambda) \approx X_{1}+\cdots+X_{n}
$$

where X_{1}, \ldots, X_{n} are i.i.d. Bernoulli random variables with mean λ / n.

- Now, we have the machinery to make this precise.
- Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with means p_{1}, \ldots, p_{n}.
- In other words, for each $X_{i}, \mathbb{P}\left[X_{i}=1\right]=p_{i}$ and $\mathbb{P}\left[X_{i}=0\right]=\left(1-p_{i}\right)$.
- Let $S_{n}=X_{1}+\cdots+X_{n}$.

We are trying to approx
S_{n} by Docs (λ)

Poisson approximation $\left[\mathbb{P}\left[P_{\text {Dis }}\left(\lambda_{i}\right)=0\right]=\mathbb{R}\left[\operatorname{Brr}\left(p_{i}\right)=0\right]\right]$

- Let $\lambda_{i}=-\log \left(1-p_{i}\right)$. Equivalently, $e^{-\lambda_{i}}=\left(1-p_{i}\right)$.
- Let $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.

$$
\begin{aligned}
S_{n} & =x_{1}+\ldots+x_{n} \\
x_{i} & \approx \operatorname{Pois}\left(\lambda_{i}\right) \\
S_{n} & \approx \operatorname{Pois}\left(\lambda_{1}\right)+\ldots+\operatorname{Pois}\left(\lambda_{n}\right) \\
& \approx \operatorname{Pois}(\lambda)
\end{aligned}
$$

Poisson approximation

- Let $\lambda_{i}=-\log \left(1-p_{i}\right)$. Equivalently, $e^{-\lambda_{i}}=\left(1-p_{i}\right)$.
- Let $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.
- We will show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2}
$$

Poisson approximation

- Let $\lambda_{i}=-\log \left(1-p_{i}\right)$. Equivalently, $e^{-\lambda_{i}}=\left(1-p_{i}\right)$.
- Let $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.
- We will show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2}
$$

- Example: $\Lambda>0$ is fixed, n is large, $p_{i}=\Lambda / n$ for all $i=1, \ldots, n$.
- Then, $\lambda_{i}=\Lambda / n+O\left(\Lambda^{2} / n^{2}\right), \lambda=\Lambda+O\left(\Lambda^{2} / n\right)$.

$$
\text { ir wonn }==
$$

$-\log \left(1-\frac{n}{n}\right)$

Poisson approximation

- Let $\lambda_{i}=-\log \left(1-p_{i}\right)$. Equivalently, $e^{-\lambda_{i}}=\left(1-p_{i}\right)$.
- Let $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.
- We will show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \underbrace{\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2} .}
$$

- Example: $\Lambda>0$ is fixed, n is large, $p_{i}=\Lambda / n$ for all $i=1, \ldots, n$.
- Then, $\lambda_{i}=\Lambda / n+O\left(\Lambda^{2} / n^{2}\right), \lambda=\Lambda+O\left(\Lambda^{2} / n\right)$.
- On the homework, you will show that $\operatorname{TV}(\operatorname{Pois}(\mu), \operatorname{Pois}(\nu)) \leq|\nu-\mu|$.

$$
\underbrace{n}_{i=1} \lambda_{i}^{2}=O\left(w \cdot \frac{n^{2}}{n^{2}}\right)=O\left(\underline{\left.\underline{\left(\frac{n^{2}}{n}\right.}\right)}\right.
$$

Poisson approximation

- Let $\lambda_{i}=-\log \left(1-p_{i}\right)$. Equivalently, $e^{-\lambda_{i}}=\left(1-p_{i}\right)$.
- Let $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.
- We will show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \widehat{\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2}} .
$$

- Example: $\Lambda>0$ is fixed, n is large, $p_{i}=\Lambda / n$ for all $i=1, \ldots, n$.
- Then, $\lambda_{i}=\Lambda / n+O\left(\Lambda^{2} / n^{2}\right), \underline{\underline{\lambda}}=\underline{\underline{\Lambda}}+\underline{\left(\Lambda^{2} / n\right)}$.
- On the homework, you will show that $\operatorname{TV}(\operatorname{Pois}(\mu), \operatorname{Pois}(\nu)) \leq|\nu-\mu|$.
- Then, by the triangle inequality,

Poisson approximation

- Let $\overline{\lambda_{i}}=-\log \left(1-p_{i}\right)$. Equivalently, $e^{-\lambda_{i}}=\left(1-p_{i}\right)$.
- Let $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.
- We will show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2}
$$

- Example: $\Lambda>0$ is fixed, n is large, $p_{i}=\Lambda / n$ for all $i=1, \ldots, n$.
- Then, $\bar{\lambda}_{i}=\Lambda / n+O\left(\Lambda^{2} / n^{2}\right), \lambda=\Lambda+O\left(\Lambda^{2} / n\right) . \quad \lambda_{i}=-\log \left(1-\rho_{i}\right)$
- On the homework, you will show that $\operatorname{TV}(\operatorname{Pois}(\mu), \operatorname{Pois}(\nu)) \leq|\nu-\mu|$.
- Then, by the triangle inequality,

$$
\begin{aligned}
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\Lambda)\right) & \leq \operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right)+\operatorname{TV}(\operatorname{Pois}(\lambda), \operatorname{Pois}(\Lambda)) \\
& \leq O\left(\Lambda^{2} / n\right)+O\left(\Lambda^{2} / n\right) \\
& \leq O\left(\Lambda^{2} / n\right)
\end{aligned}
$$

which justifies our approximation from before.

Poisson approximation

- We now show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2}
$$

let metry to prove this for $n=1$.

$$
\left[\begin{array}{c}
T V(\operatorname{Ber}(p), \operatorname{pois}(-\log (1-p))) \\
\leq \frac{1}{2}(\log (1-p))^{2}
\end{array}\right]
$$

Poisson approximation

- We now show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2}
$$

- Let us first prove this for $n=1$. Let $\lambda=-\log (1-p)$. We want to show:

$$
\operatorname{TV}(\operatorname{Ber}(p), \operatorname{Pois}(\lambda)) \leq \frac{1}{2} \lambda^{2}
$$

Poisson approximation

- We now show that

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2}
$$

- Let us first prove this for $n=1$. Let $\lambda=-\log (1-p)$. We want to show:

$$
\operatorname{TV}(\operatorname{Ber}(p), \operatorname{Pois}(\lambda)) \leq \frac{1}{2} \lambda^{2}
$$

- By the coupling lemma, it suffices to exhibit a coupling $(\widehat{X}, \widehat{Y})$ of $\operatorname{Ber}(p)$ and Pois (λ) such that

$$
\mathbb{P}[\widehat{X} \neq \widehat{Y}] \leq \frac{1}{2} \lambda^{2}
$$

Poisson approximation

- Here is such a coupling: Generate $Z \sim \operatorname{Pois}(\lambda)$. Then, set $\widehat{Y}=Z$ and $\widehat{X}=\min \{Z, 1\}$.

Poisson approximation

- Here is such a coupling: Generate $Z \sim \operatorname{Pois}(\lambda)$. Then, set $\widehat{Y}=Z$ and $\widehat{X}=\min \{Z, 1\}$.
- Clearly \widehat{Y} has the correct marginal distribution. As for \widehat{X}, note that

$$
\begin{aligned}
& \mathbb{P}[\hat{x}=0]=\mathbb{P}[Z=0]=e^{-\lambda}=(1-p)=\mathbb{P}[\operatorname{Ber}(p)=0] . \\
& \Rightarrow \hat{\mathbb{R}}[\hat{x}=1]=1-(1-p)=p \\
& \hat{x}=\min \{z, 1\} \quad \hat{x}=0 \Leftrightarrow z=0
\end{aligned}
$$

Poisson approximation

- Here is such a coupling: Generate $Z \sim \operatorname{Pois}(\lambda)$. Then, set $\widehat{Y}=Z$ and $\widehat{X}=\min \{Z, 1\}$.
- Clearly \widehat{Y} has the correct marginal distribution. As for \widehat{X}, note that

$$
\mathbb{P}[\widehat{X}=0]=\mathbb{P}[Z=0]=e^{-\lambda}=(1-p)=\mathbb{P}[\operatorname{Ber}(p)=0] .
$$

- Moreover,

$$
\mathbb{P}[\widehat{X} \neq \widehat{Y}]=\mathbb{P}[Z \geq 2]
$$

$$
\begin{aligned}
& \hat{y}=z \\
& \hat{x}=\min \{z, 1\}
\end{aligned}
$$

Poisson approximation

- Here is such a coupling: Generate $Z \sim \operatorname{Pois}(\lambda)$. Then, set $\widehat{Y}=Z$ and $\widehat{X}=\min \{Z, 1\}$.
- Clearly \widehat{Y} has the correct marginal distribution. As for \widehat{X}, note that

$$
\mathbb{P}[\widehat{X}=0]=\mathbb{P}[Z=0]=e^{-\lambda}=(1-p)=\mathbb{P}[\operatorname{Ber}(p)=0] .
$$

- Moreover,

$$
\begin{aligned}
& \mathbb{P}[\widehat{X} \neq \widehat{Y}]=\mathbb{P}[Z \geq 2] \\
&=e^{-\lambda} \sum_{j \geq 2} \frac{\lambda^{j}}{j!} \\
&=\left.e^{-\lambda} \int^{\frac{\lambda}{2}}\right|_{j \geq 2} ^{\sum_{1}^{1} \frac{\lambda j^{j-2}}{j!} \cdot 2} \text { change of } \\
& j-2=k \text { vars. }
\end{aligned}
$$

Poisson approximation

- Here is such a coupling: Generate $Z \sim \operatorname{Pois}(\lambda)$. Then, set $\widehat{Y}=Z$ and $\widehat{X}=\min \{Z, 1\}$.
- Clearly \widehat{Y} has the correct marginal distribution. As for \widehat{X}, note that

$$
\mathbb{P}[\widehat{X}=0]=\mathbb{P}[Z=0]=e^{-\lambda}=(1-p)=\mathbb{P}[\operatorname{Ber}(p)=0] .
$$

- Moreover,

$$
\begin{aligned}
\mathbb{P}[\widehat{X} \neq \widehat{Y}] & =\mathbb{P}[Z \geq 2] \\
& =e^{-\lambda} \sum_{j \geq 2} \frac{\lambda^{j}}{j!} \\
& \leq \frac{\lambda^{2}}{2} \underbrace{\sum_{j \geq 0}}_{\underline{1}} e^{-\lambda} \frac{\lambda^{j}}{j!}
\end{aligned}
$$

Poisson approximation

- Here is such a coupling: Generate $Z \sim \operatorname{Pois}(\lambda)$. Then, set $\widehat{Y}=Z$ and $\widehat{X}=\min \{Z, 1\}$.
- Clearly \widehat{Y} has the correct marginal distribution. As for \widehat{X}, note that

$$
\mathbb{P}[\widehat{X}=0]=\mathbb{P}[Z=0]=e^{-\lambda}=(1-p)=\mathbb{P}[\operatorname{Ber}(p)=0] .
$$

- Moreover,

$$
\begin{aligned}
& \mathbb{P}[\hat{X} \neq \widehat{Y}]=\mathbb{P}[Z \geq 2] \\
&=e^{-\lambda} \sum_{j \geq 2} \frac{\lambda^{j}}{j!} \\
& \leq \frac{\lambda^{2}}{2} \sum_{j \geq 0} e^{-\lambda} \frac{\lambda^{j}}{j!} \quad \lambda=-\log (1-p) . \\
&=\frac{\lambda^{2}}{2} . \Rightarrow T \cup(\operatorname{Ber}(p), \text { Pois }(\lambda) l \\
& \leq \lambda^{2} / 2
\end{aligned}
$$

Poisson approximation

- At this point, we are almost done.

Poisson approximation

- At this point, we are almost done.
- Let $\left(\underline{X_{i}, \widehat{Y}_{i}}\right)$ be a coupling of $\operatorname{Ber}\left(p_{i}\right)$ and $\operatorname{Pois}\left(\lambda_{i}\right)$ as above.
- Let $\left(\widehat{X}_{1}, \widehat{Y}_{1}\right), \ldots,\left(\widehat{X}_{n}, \widehat{Y}_{n}\right)$ be independent copies of this coupling.
$z_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right)$

$$
z_{r} \sim P_{0 i}\left(\lambda_{n}\right) \quad z_{1} \ldots z_{n}
$$

are ind.

$$
\begin{aligned}
& \hat{y}_{1}=z_{1} \\
& \hat{x}_{1}=\min \left\{z_{1,1}\right\} \ldots
\end{aligned}
$$

Poisson approximation

- At this point, we are almost done.
- Let $\left(\widehat{X}_{i}, \widehat{Y}_{i}\right)$ be a coupling of $\operatorname{Ber}\left(p_{i}\right)$ and $\operatorname{Pois}\left(\lambda_{i}\right)$ as above.
- Let $\left(\widehat{X}_{1}, \widehat{Y}_{1}\right), \ldots,\left(\widehat{X}_{n}, \widehat{Y}_{n}\right)$ be independent copies of this coupling.
- Then, $S_{n} \sim \widehat{X}_{1}+\cdots+\widehat{X}_{n}$ and $\operatorname{Pois}(\lambda) \sim \widehat{Y}_{1}+\cdots+\widehat{Y}_{n}$.
$x_{1}+\ldots+x_{n}$

$$
\text { Pois }\left(\lambda_{1}\right)+\cdots+\operatorname{Pois}\left(\lambda_{n}\right)
$$

Poisson approximation

- At this point, we are almost done.
- Let $\left(\widehat{X}_{i}, \widehat{Y}_{i}\right)$ be a coupling of $\operatorname{Ber}\left(p_{i}\right)$ and $\operatorname{Pois}\left(\lambda_{i}\right)$ as above.
- Let $\left(\widehat{X}_{1}, \widehat{Y}_{1}\right), \ldots,\left(\widehat{X}_{n}, \widehat{Y}_{n}\right)$ be independent copies of this coupling.
- Then, $S_{n} \sim \widehat{X}_{1}+\cdots+\widehat{X}_{n}$ and $\operatorname{Pois}(\lambda) \sim \widehat{Y}_{1}+\cdots+\widehat{Y}_{n}$.
- Moreover, by the coupling lemma and our previous calculation

$$
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \mathbb{P}\left[\widehat{X}_{1}+\ldots \widehat{X}_{n} \neq \widehat{Y}_{1}+\cdots+\widehat{Y}_{n}\right]
$$

Poisson approximation

- At this point, we are almost done.
- Let $\left(\widehat{X}_{i}, \widehat{Y}_{i}\right)$ be a coupling of $\operatorname{Ber}\left(p_{i}\right)$ and $\operatorname{Pois}\left(\lambda_{i}\right)$ as above.
- Let $\left(\widehat{X}_{1}, \widehat{Y}_{1}\right), \ldots,\left(\widehat{X}_{n}, \widehat{Y}_{n}\right)$ be independent copies of this coupling.
- Then, $S_{n} \sim \widehat{X}_{1}+\cdots+\widehat{X}_{n}$ and $\operatorname{Pois}(\lambda) \sim \widehat{Y}_{1}+\cdots+\widehat{Y}_{n}$.
- Moreover, by the coupling lemma and our previous calculation

$$
\begin{aligned}
\operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) & \leq \mathbb{P}\left[\widehat{X}_{1}+\ldots \widehat{X}_{n} \neq \widehat{Y}_{1}+\cdots+\widehat{Y}_{n}\right] \\
& \leq \mathbb{P}\left[\widehat{X}_{1} \neq \widehat{Y}_{1}\right]+\cdots+\mathbb{P}\left[\widehat{X}_{n} \neq \widehat{Y}_{n}\right] \\
& \leq \frac{1}{2} \lambda_{1}{ }^{2}+\cdots+\frac{1}{2} \lambda_{n}{ }^{2}
\end{aligned}
$$

Poisson approximation

- At this point, we are almost done.
- Let $\left(\widehat{X}_{i}, \widehat{Y}_{i}\right)$ be a coupling of $\operatorname{Ber}\left(p_{i}\right)$ and $\operatorname{Pois}\left(\lambda_{i}\right)$ as above.
- Let $\left(\widehat{X}_{1}, \widehat{Y}_{1}\right), \ldots,\left(\widehat{X}_{n}, \widehat{Y}_{n}\right)$ be independent copies of this coupling.
- Then, $S_{n} \sim \widehat{X}_{1}+\cdots+\widehat{X}_{n}$ and $\operatorname{Pois}(\lambda) \sim \widehat{Y}_{1}+\cdots+\widehat{Y}_{n}$.
- Moreover, by the coupling lemma and our previous calculation

$$
\begin{aligned}
& \operatorname{TV}\left(S_{n}, \operatorname{Pois}(\lambda)\right) \leq \mathbb{P}\left[\widehat{X}_{1}+\ldots \widehat{X}_{n} \neq \widehat{Y}_{1}+\cdots+\widehat{Y}_{n}\right] \\
& \leq \mathbb{P}\left[\widehat{X}_{1} \neq \widehat{Y}_{1}\right]+\cdots+\mathbb{P}\left[\widehat{X}_{n} \neq \widehat{Y}_{n}\right] \\
& \leq \frac{\lambda_{1}^{2}}{2}+\cdots+\frac{\lambda_{n}^{2}}{2} . \\
& \forall \mathrm{A} \\
& \operatorname{Pr}\left(S_{n} \in A\right)=\operatorname{Pr}(\operatorname{Poi}(\lambda) \in A) \pm\left(\frac{\lambda_{1}{ }^{2}+\cdots+\lambda_{n}{ }^{2}}{2}\right)
\end{aligned}
$$

Random mapping representation of Markov chains

- We have often specified transitions of Markov chains in words. For instance, for the symmetric simple random walk, instead of writing down the transition matrix, we have used a simple description like: at each step, toss an independent fair coin. If the coin lands heads, move one step right. Else, move one step left.

Random mapping representation of Markov chains

- We have often specified transitions of Markov chains in words. For instance, for the symmetric simple random walk, instead of writing down the transition matrix, we have used a simple description like: at each step, toss an independent fair coin. If the coin lands heads, move one step right. Else, move one step left.
- We can formalize this by using the random mapping representation of a transition matrix P on the state space S. This is simply a function $f: S \times \Lambda \rightarrow S$ along with a Λ-valued random variable Z which satisfies

$$
\mathbb{P}[f(x, Z)=y]=P_{x, y}
$$

- For instance, in the case of the symmetric simple random walk, we can take $\Lambda=\{H, T\}, Z$ is a random variable which is H with probability $1 / 2$ and T otherwise, and $\underline{\underline{f(x, H}})=x+1, f(x, T)=x-1$.

Random mapping representations of Markov chains

- In fact, every transition matrix on a finite state space $\{1, \ldots, n\}$ has a random mapping representation.

Random mapping representations of Markov chains

- In fact, every transition matrix on a finite state space $\{1, \ldots, n\}$ has a random mapping representation.
- Indeed, we can take $\Lambda=[0,1], Z$ is uniformly distributed on $[0,1]$ and

$$
\begin{array}{r}
f(i, z)=j \Longleftrightarrow \sum_{\ell=1}^{j-1} P_{i, \ell} \leq z \leq \sum_{\ell=1}^{j} P_{i, \ell} . \\
P_{11} P_{12} \ldots P_{1 n} P_{P_{11}}^{P_{11}+P_{12}}{ }^{1}
\end{array}
$$

