STATS 217: Introduction to Stochastic Processes I

Lecture 19

Convergence theorem

Today, we will prove the convergence theorem for irreducible, aperiodic, finite-state Markov chains.

Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on S with transition matrix P. Suppose that P is irreducible and aperiodic with unique stationary distribution π. There exists some $\epsilon>0$ (depending on P) such that

Key quantities

- For any $x \in S$, let

$$
\Delta_{x}(n)=\operatorname{TV}\left(X_{n} \mid X_{0}=x, \pi\right)
$$

- Let

$$
\Delta(n)=\max _{x \in S} \Delta_{x}(n) .
$$

- Therefore, our goal is to show that there exists some $\epsilon>0$ such that

$$
\max _{x \in S} \underbrace{T V(n) \leq(1-\epsilon)^{n} .}_{\Delta_{x}^{\prime}(n)}
$$

Key quantities

- For any $x \in S$, let

$$
\Delta_{x}(n)=\operatorname{TV}\left(X_{n} \mid X_{0}=x, \pi\right)
$$

- Let

$$
\Delta(n)=\max _{x \in S} \Delta_{x}(n) .
$$

- Therefore, our goal is to show that there exists some $\epsilon>0$ such that

$$
\Delta(n)<(1-\epsilon)^{n} \text {. We will show this }
$$

$$
01010101 \ldots . \quad n=r_{0} k \text { for some } r_{0} \geqslant 1 \text {. }
$$

- On the homework, you will show that $\Delta(n+1) \leq \Delta(n)$ for all integers $n \geq 0$. un

Key quantities

- For any $x \in S$, let

$$
\Delta_{x}(n)=\operatorname{TV}\left(X_{n} \mid X_{0}=x, \pi\right)
$$

- Let

$$
\Delta(n)=\max _{x \in S} \Delta_{x}(n) .
$$

- Therefore, our goal is to show that there exists some $\epsilon>0$ such that

$$
\Delta(n) \leq(1-\epsilon)^{n} .
$$

- On the homework, you/will show that $\Delta(n+1) \leq \Delta(n)$ for all integers $n \geq 0$.
- Therefore, it suffices fo show that there is some integer $\underline{r}_{0} \geq 1$ and some $\epsilon>0$ such that

$$
\begin{aligned}
{\left[\Delta\left(r_{0} n\right)\right.} & \left.\leq(1-\epsilon)^{n}\right] \\
& \leq(1-\delta)^{r_{0} n} \text { for } \quad \begin{array}{l}
\text { some } \\
\delta>0
\end{array}
\end{aligned}
$$

Key quantities

$$
\Delta_{x}(n)=\operatorname{TV}\left(x_{n} \mid x_{0}=x, \pi\right)
$$

- It will be a bit more convenient to work with the following quantities: for any $x, y \in S$, let

$$
D_{x, y}(n)=\operatorname{TV}\left(X_{n}\left|X_{0}=x, X_{n}\right| X_{0}=y\right)
$$

- Let

Recall:

$$
\Delta(n)=\max _{x \in S} \Delta_{x}(\underline{n})
$$

To b ho these.

Key quantities

$$
\Delta(n)=\max _{x \in S} T V\left(x_{n} \mid x_{0}=x, \pi\right)
$$

- It will be a bit more convenient to work with the following quantities: for any $x, y \in S$, let

$$
D_{x, y}(n)=\operatorname{TV}\left(X_{n}\left|X_{0}=x, X_{n}\right| X_{0}=y\right)
$$

- Let
- $\Delta(n) \leq D(n)$ for all integers n. Why?

~~~~
\[
\downarrow
\]

So it will suffice to show that
\[
\begin{aligned}
& \text { Dire to show that } \\
& \begin{aligned}
D(1-\epsilon)^{n} \Rightarrow & \leq\left(r_{0} n\right) \\
& \leq(1-\epsilon)^{\Omega} .
\end{aligned}
\end{aligned}
\]

\section*{Key quantities}
- It will be a bit more convenient to work with the following quantities: for any \(x, y \in S\), let
\[
D_{x, y}(n)=\operatorname{TV}\left(X_{n}\left|X_{0}=x, X_{n}\right| X_{0}=y\right)
\]
- Let
\[
D(n)=\max _{x, y \in S} D_{x, y}(n) .
\]
- \(\Delta(n) \leq D(n)\) for all integers \(n\). Why?
- It suffices to show that for any \(x \in S\) and any \(A \subseteq \Omega\),

Key quantities
\(P^{n}(x, \cdot)\) is the distribution of \(x_{n} \mid x_{0}=x\)
We have
\[
\begin{aligned}
& \quad \mathbb{P}\left[X_{n} \in A \mid X_{0}=x\right]-\pi(A)=\stackrel{\bar{P}^{n}(x, A)-\sum_{y \in S} \pi(y) \overline{P^{n}(y, A)}}{ } \\
& \pi=\pi P^{n} \quad \neq \overline{\sum_{y \in S}} \pi(y) P^{n}(x, A)-\sum_{y \in S} \pi(y) P^{n}(y, A) \\
& \pi(A) \\
& = \\
& \sum_{y \in S} \pi(y) P^{n}(y, A) \quad \sum_{y \in S} \pi(y)=1 \\
& \pi(i)=\sum_{y \in S}^{1} \pi(y) P^{r}(y, i)
\end{aligned}
\]

\section*{Key quantities}

We have
\[
\begin{aligned}
\mathbb{P}\left[X_{n} \in A \mid X_{0}=x\right]-\pi(A) & =P^{n}(x, A)-\sum_{y \in S} \pi(y) P^{n}(y, A) \\
& =\sum_{y \in S} \pi(y) P^{n}(x, A)-\sum_{y \in S} \pi(y) P^{n}(y, A) \\
& =\sum_{y \in S} \pi(y)\left[P^{n}(x, A)-P^{n}(y, A)\right] \\
& \leq \max _{y \in S}\left|P^{n}(x, A)-P^{n}(y, A)\right|
\end{aligned}
\]

\section*{Key quantities}

We have
\[
\begin{aligned}
& \mathbb{P}\left[X_{n} \in A \mid X_{0}=x\right]-\pi(A)\left.=P^{n}(x, A)-\sum_{y \in S} \pi(y) P^{n}(y, A)\right] \\
&=\sum_{y \in S} \pi(y) P^{n}(x, A)-\sum_{y \in S} \pi(y) P^{n}(y, A) \\
&=\sum_{y \in S} \pi(y)\left[P^{n}(x, A)-P^{n}(y, A)\right] \\
& \leq \max _{y \in S}\left|P^{n}(x, A)-P^{n}(y, A)\right| \\
& \leq \max _{y \in S} D_{x, y}(n) \leq D(\Omega) \\
& D x, y(n)=\quad 7 \vee\left(x_{n}\left|x_{0}=x, x_{n}\right| x_{0}=y\right)
\end{aligned}
\]

\section*{Key quantities}

We have
\[
\begin{aligned}
\mathbb{P}\left[X_{n} \in A \mid X_{0}=x\right]-\pi(A) & =P^{n}(x, A)-\sum_{y \in S} \pi(y) P^{n}(y, A) \\
& =\sum_{y \in S} \pi(y) P^{n}(x, A)-\sum_{y \in S} \pi(y) P^{n}(y, A) \\
& =\sum_{y \in S} \pi(y)\left[P^{n}(x, A)-P^{n}(y, A)\right] \\
& \leq \max _{y \in S}\left|P^{n}(x, A)-P^{n}(y, A)\right| \\
& \leq \max _{y \in S} D_{x, y}(n) \\
& \leq D(n) .
\end{aligned}
\]
\[
\underset{(n)}{\Delta_{x}}=T V^{-}\left(X_{n} \mid X_{0}=x, \pi\right), \underset{(n)}{\Delta}=\max _{x} \Delta_{x}(\Omega) .
\]
- We want to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
\left.\Delta\left(r_{0} n\right) \leq(1-\epsilon)^{n} .\right] \quad \text { this is enough b/c } \quad \begin{aligned}
& \Delta(n+1) \leq \Delta(n) .
\end{aligned}
\]
- Since \(\Delta(n) \leq D(n)\) for all integers \(n \geq 0\), it suffices to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
\begin{aligned}
& D(n) \\
&=\max _{x, y} \operatorname{TV}\left(x_{n} \mid x_{0}=x_{1}\right. \\
&\left.x_{n} \mid x_{0}=y\right)
\end{aligned}
\]

\section*{Overview}
- We want to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
\Delta\left(r_{0} n\right) \leq(1-\epsilon)^{n} .
\]
- Since \(\Delta(n) \leq D(n)\) for all integers \(n \geq 0\), it suffices to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
D\left(r_{0} n\right) \leq(1-\epsilon)^{n} .
\]
- For this, we will first show that \(D\) is sub-multiplicative ie., for any integers \(s, t \geq 0\),
\[
D(s+t) \leq D(s) D(t)
\]
\[
\begin{aligned}
& \text { suppose } D\left(r_{0}\right) \leqslant 1-\varepsilon \\
& D\left(r_{0} n\right)=D\left(r_{0}+r_{0}+\ldots+r_{0}\right) \leq D\left(r_{0}\right)^{n} \\
& \leq(1-\varepsilon)^{n} .
\end{aligned}
\]

\section*{Overview}
- We want to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
\Delta\left(r_{0} n\right) \leq(1-\epsilon)^{n} .
\]
- Since \(\Delta(n) \leq D(n)\) for all integers \(n \geq 0\), it suffices to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
D\left(r_{0} n\right) \leq(1-\epsilon)^{n} .
\]
- For this, we will first show that \(D\) is sub-multiplicative i.e., for any integers \(s, t \geq 0\),
\[
D(s+t) \leq D(s) D(t)
\]
- This implies that for any integer \(r \geq 1, D(n r) \leq D(r)^{n}\).

\section*{Overview}
- We want to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
\Delta\left(r_{0} n\right) \leq(1-\epsilon)^{n} .
\]
- Since \(\Delta(n) \leq D(n)\) for all integers \(n \geq 0\), it suffices to show that there is some integer \(r_{0} \geq 1\) and some \(\epsilon>0\) such that
\[
D\left(r_{0} n\right) \leq(1-\epsilon)^{n} .
\]
- For this, we will first show that \(D\) is sub-multiplicative i.e., for any integers \(s, t \geq 0\),
\[
D(s+t) \leq D(s) D(t)
\]
- This implies that for any integer \(r \geq 1, D(n r) \leq D(r)^{n}\).
- Finally, using the irreducibility and aperiodicity of \(P\), we will show that there exists an integer \(r_{0} \geq 1\) such that \(D\left(r_{0}\right)<1\).

\section*{Sub-multiplicativity of \(D \quad \begin{array}{llll}0 \\ \{0\} & \text { i }\}\end{array}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\)}
- Let us prove the key sub-multiplicativity property
\[
D(t+s) \leq D(t) D(s) .
\]
- The left hand side is
\[
\max _{x, y \in S} \operatorname{TV}\left(X_{t+s}\left|X_{0}=x, X_{t+s}\right| X_{0}=y\right)
\]
- For now, fix \(x, y \in S\). Later, we will take the maximum.

\section*{Sub-multiplicativity of \(D\)}
- Let us prove the key sub-multiplicativity property
\[
D(t+s) \leq D(t) D(s) .
\]
- The left hand side is
\[
\max _{x, y \in S} \operatorname{TV}\left(X_{t+s}\left|X_{0}=x, X_{t+s}\right| X_{0}=y\right) .
\]
- For now, fix \(x, y \in S\). Later, we will take the maximum.
- We will bound the left hand side by constructing a coupling \(\left(\widehat{X}_{t+s}, \widehat{Y}_{t+s}\right)\) of \(X_{t+s} \mid X_{0}=x\) and \(X_{t+s} \mid X_{0}=y\).
Recall: coupling lemma
\[
\operatorname{TV}(\mu, \nu)=\min _{(x, y) \text { coupling of } \mu \approx D}[x \neq Y]
\]

Constructing a coupling
we are hying to conshuct
\[
\mathbb{P}\left[\hat{x}_{t+s} \neq \hat{Y}_{t+s}\right] \leq D(s) D(t) .
\]

Here is our coupling:
- First, use the coupling lemma to find a coupling \(\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)\) of the distributions \(X_{t} \mid X_{0}=x\) and \(X_{t} \mid X_{0}=y\) such that
\[
\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right]=\operatorname{TV}\left(X_{t}\left|X_{0}=x, X_{t}\right| X_{0}=y\right)=D_{x, y}(t)
\]
imagine
\[
\sum_{x_{t} \mid x_{0}=x \quad}^{\substack{x \\ x_{t} \mid x_{0}=y}}
\]
\[
\begin{aligned}
& T V\left(x_{t}\left|x_{0}=x, x_{t}\right| x_{0}=y\right) \\
& =D_{x, y}(t) \\
& \leq D(t)
\end{aligned}
\]

\section*{Constructing a coupling}

Here is our coupling:
- First, use the coupling lemma to find a coupling \(\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)\) of the distributions \(X_{t} \mid X_{0}=x\) and \(X_{t} \mid X_{0}=y\) such that
\[
\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right]=\operatorname{TV}\left(X_{t}\left|X_{0}=x, X_{t}\right| X_{0}=y\right)=D_{x, y}(t)
\]
- If \(\widehat{X}_{t}=\widehat{Y}_{t}\), then set \(\widehat{X}_{t+s}=\widehat{Y}_{t+s}\). \(\sim\)
\[
\hat{x}_{t} p^{s}=\hat{y}_{t} p^{s}
\]

\section*{Constructing a coupling}

Here is our coupling:
- First, use the coupling lemma to find a coupling \(\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)\) of the distributions \(X_{t} \mid X_{0}=x\) and \(X_{t} \mid X_{0}=y\) such that
\[
\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right]=\operatorname{TV}\left(X_{t}\left|X_{0}=x, X_{t}\right| X_{0}=y\right)=D_{x, y}(t)
\]
- If \(\widehat{X}_{t}=\widehat{Y}_{t}\), then set \(\widehat{X}_{t+s}=\widehat{Y}_{t+s}\).
- Else, if \(x^{\prime}=\widehat{X}_{t} \neq \widehat{Y}_{t}=y^{\prime}\), use the coupling lemma to find a coupling ( \(\widehat{U}_{s}, \widehat{W}_{s}\) ) of the distributions \(X_{t+s} \mid X_{t}=x^{\prime}\) and \(X_{t+s} \mid X_{t}=y^{\prime}\) such that
\[
\begin{aligned}
\mathbb{P}\left[\widehat{U}_{s} \neq \widehat{W}_{s}\right] & =\operatorname{TV}\left(X_{t+s}\left|X_{t}=x^{\prime}, x_{t+s}\right| X_{t}=y^{\prime}\right) \\
x_{s} \mid x_{0} & =x^{\prime} \sim x_{t+s} \mid x_{t}=x^{\prime} \\
x_{s} \mid x_{0} & =y^{\prime} \sim x_{t+s} \mid x_{t}=y^{\prime}
\end{aligned}
\]

\section*{Constructing a coupling}

Here is our coupling:
- First, use the coupling lemma to find a coupling \(\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)\) of the distributions \(X_{t} \mid X_{0}=x\) and \(X_{t} \mid X_{0}=y\) such that
\[
\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right]=\operatorname{TV}\left(X_{t}\left|X_{0}=x, X_{t}\right| X_{0}=y\right)=D_{x, y}(t)
\]
- If \(\widehat{X}_{t}=\widehat{Y}_{t}\), then set \(\widehat{X}_{t+s}=\widehat{Y}_{t+s}\).
- Else, if \(x^{\prime}=\widehat{X}_{t} \neq \widehat{Y}_{t}=y^{\prime}\), use the coupling lemma to find a coupling ( \(\widehat{U}_{s}, \widehat{W}_{s}\) ) of the distributions \(X_{t+s} \mid X_{t}=x^{\prime}\) and \(X_{t+s} \mid X_{t}=y^{\prime}\) such that
\[
\mathbb{P}\left[\widehat{U}_{s} \neq \widehat{W}_{s}\right]=\operatorname{TV}\left(X_{t+s}\left|X_{t}=x^{\prime}, X_{t+s}\right| X_{t}=y^{\prime}\right)=D_{x^{\prime}, y^{\prime}}(s) \leq D(s)
\]

Here, the second equality uses the Markov property.

\section*{Constructing a coupling}

Here is our coupling:
- First, use the coupling lemma to find a coupling \(\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)\) of the distributions \(X_{t} \mid X_{0}=x\) and \(X_{t} \mid X_{0}=y\) such that
\[
\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right]=\operatorname{TV}\left(X_{t}\left|X_{0}=x, X_{t}\right| X_{0}=y\right)=D_{x, y}(t)
\]
- If \(\widehat{X}_{t}=\widehat{Y}_{t}\), then set \(\widehat{X}_{t+s}=\widehat{Y}_{t+s}\).
- Else, if \(x^{\prime}=\widehat{X}_{t} \neq \widehat{Y}_{t}=y^{\prime}\), use the coupling lemma to find a coupling ( \(\widehat{U}_{s}, \widehat{W}_{s}\) ) of the distributions \(X_{t+s} \mid X_{t}=x^{\prime}\) and \(X_{t+s} \mid X_{t}=y^{\prime}\) such that
\[
\mathbb{P}\left[\widehat{U}_{s} \neq \widehat{W}_{s}\right]=\operatorname{TV}\left(X_{\underline{t+s}}\left|X_{t}=x^{\prime}, X_{\underline{t+s}}\right| X_{t}=y^{\prime}\right)=D_{x^{\prime}, y^{\prime}}(s) \leq D(s) .
\]

Here, the second equality uses the Markov property. Then, set \(T v\left(x_{s} \mid v_{0}{ }^{\prime} x^{\prime}\right.\),
\[
\begin{array}{ll}
\left.+\widehat{X}_{t+s}, \widehat{Y}_{t+s}\right)=\left(\widehat{U}_{s}, \widehat{W}_{s}\right) . & x_{s}\left(x_{0}=y^{\prime}\right)
\end{array}
\]

\section*{Analysis of the coupling}
- By construction, it is clear that \(\widehat{X}_{t+s} \sim X_{t+s} \mid X_{0}=x\) and \(\widehat{Y}_{t+s} \sim X_{t+s} \mid X_{0}=y\).

\section*{Analysis of the coupling}
- By construction, it is clear that \(\widehat{X}_{t+s} \sim X_{t+s} \mid X_{0}=x\) and \(\widehat{Y}_{t+s} \sim X_{t+s} \mid X_{0}=y\).
- Therefore, by the coupling lemma,
\[
\begin{aligned}
D_{x, y}(t+s) & \leq \mathbb{P}\left[\widehat{X}_{t+s} \neq \widehat{Y}_{t+s}\right] \\
& =\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}, \widehat{U}_{s} \neq \widehat{W}_{s}\right]
\end{aligned}
\]

\section*{Analysis of the coupling}
- By construction, it is clear that \(\widehat{X}_{t+s} \sim X_{t+s} \mid X_{0}=x\) and \(\widehat{Y}_{t+s} \sim X_{t+s} \mid X_{0}=y\).
- Therefore, by the coupling lemma,
\[
\begin{aligned}
D_{x, y}(t+s) & \leq \mathbb{P}\left[\widehat{X}_{t+s} \neq \widehat{Y}_{t+s}\right] \\
& =\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}, \widehat{U}_{s} \neq \widehat{W}_{s}\right] \\
& =\mathbb{P}\left[\widehat{U}_{s} \neq \widehat{W}_{s} \mid \widehat{X}_{t} \neq \widehat{Y}_{t}\right] \mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right] \\
& \leq \underbrace{D(S)} .
\end{aligned}
\]
and now take max over \(x, y\)

\section*{Analysis of the coupling}
- By construction, it is clear that \(\widehat{X}_{t+s} \sim X_{t+s} \mid X_{0}=x\) and \(\widehat{Y}_{t+s} \sim X_{t+s} \mid X_{0}=y\).
- Therefore, by the coupling lemma,
\[
\begin{aligned}
D_{x, y}(t+s) & \leq \mathbb{P}\left[\widehat{X}_{t+s} \neq \widehat{Y}_{t+s}\right] \\
& =\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}, \widehat{U}_{s} \neq \widehat{W}_{s}\right] \\
& =\mathbb{P}\left[\widehat{U}_{s} \neq \widehat{W}_{s} \mid \widehat{X}_{t} \neq \widehat{Y}_{t}\right] \mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right] \\
& \leq D(s) D_{x, y}(t) .
\end{aligned}
\]

\section*{Analysis of the coupling}
- By construction, it is clear that \(\widehat{X}_{t+s} \sim X_{t+s} \mid X_{0}=x\) and \(\widehat{Y}_{t+s} \sim X_{t+s} \mid X_{0}=y\).
- Therefore, by the coupling lemma,
\[
\begin{aligned}
D_{x, y}(t+s) & \leq \mathbb{P}\left[\widehat{X}_{t+s} \neq \widehat{Y}_{t+s}\right] \\
& =\mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}, \widehat{U}_{s} \neq \widehat{W}_{s}\right] \\
& =\mathbb{P}\left[\widehat{U}_{s} \neq \widehat{W}_{s} \mid \widehat{X}_{t} \neq \widehat{Y}_{t}\right] \mathbb{P}\left[\widehat{X}_{t} \neq \widehat{Y}_{t}\right] \\
& \leq D(s) D_{x, y}(t) .
\end{aligned}
\]
- Taking the maximum over all \(x, y \in S\), we get that
\[
D(t+s) \leq D(s) D(t)
\]

\section*{Bounding \(D(r)\)}
- We claim that \(D\left(r_{0}\right)<1\).
- On the homework, you will show that if \(P\) is irreducible and aperiodic, then there exists some \(r_{0}\) such that \(P_{x, y}^{r_{0}}>0\) for all \(x, y \in S\).

\section*{Bounding \(D(r)\)}
- We claim that \(D\left(r_{0}\right)<1\).
- On the homework, you will show that if \(P\) is irreducible and aperiodic, then there exists some \(r_{0}\) such that \(P_{x, y}^{r_{0}}>0\) for all \(x, y \in S\).
- In particular, for any \(x \in S\) and for any \(A \subseteq S, A \neq \emptyset\), we have \(P^{r_{0}}(x, A)>0\).

Bounding \(D(r)\)
- We claim that \(D\left(r_{0}\right)<1\).
- On the homework, you will show that if \(P\) is irreducible and aperiodic, then there exists some \(r_{0}\) such that \(P_{x, y}^{r_{0}}>0\) for all \(x, y \in S\).
- In particular, for any \(x \in S\) and for any \(A \subseteq S, A \neq \emptyset\), we have \(P P^{r_{0}}(x, A)>0\).
- For such an \(r_{0}\), for any \(x, y \in S\) and for any \(A \subseteq S, A \neq \emptyset\), we have
\[
\begin{aligned}
& \max _{A \subseteq \Omega}\left|P_{n}^{r_{0}}(x, A)-P^{r_{0}}(y, A)\right| \leq|1-\min \{\underbrace{P^{r_{0}}(x, A), P^{r_{0}}(y, A)}_{>0}\}|<1 \text {. } \\
& \operatorname{TV}\left(x_{r_{0}}\left|x_{0}=x, x_{r_{0}}\right| x_{0}=y\right) \\
& D_{x y}{ }^{\prime \prime}\left(r_{0}\right)
\end{aligned}
\]

\section*{Bounding \(D(r)\)}
- We claim that \(D\left(r_{0}\right)<1\).
- On the homework, you will show that if \(P\) is irreducible and aperiodic, then there exists some \(r_{0}\) such that \(P_{x, y}^{r_{0}}>0\) for all \(x, y \in S\).
- In particular, for any \(x \in S\) and for any \(A \subseteq S, A \neq \emptyset\), we have \(P^{r_{0}}(x, A)>0\).
- For such an \(r_{0}\), for any \(x, y \in S\) and for any \(A \subseteq S, A \neq \emptyset\), we have
\[
\left|P^{r_{0}}(x, A)-P^{r_{0}}(y, A)\right| \leq\left|1-\min \left\{P^{r_{0}}(x, A), P^{r_{0}}(y, A)\right\}\right|<1 .
\]
- Taking the maximum over all \(A \neq \emptyset\) shows that
\[
D_{x, y}\left(r_{0}\right)=\operatorname{TV}\left(X_{r_{0}}\left|X_{0}=x, X_{r_{0}}\right| X_{0}=y\right)<1 .
\]

\section*{Bounding \(D(r)\)}
- We claim that \(D\left(r_{0}\right)<1\).
- On the homework, you will show that if \(P\) is irreducible and aperiodic, then there exists some \(r_{0}\) such that \(P_{x, y}^{r_{0}}>0\) for all \(x, y \in S\).
- In particular, for any \(x \in S\) and for any \(A \subseteq S, A \neq \emptyset\), we have \(P^{r_{0}}(x, A)>0\).
- For such an \(r_{0}\), for any \(x, y \in S\) and for any \(A \subseteq S, A \neq \emptyset\), we have
\[
\left|P^{r_{0}}(x, A)-P^{r_{0}}(y, A)\right| \leq\left|1-\min \left\{P^{r_{0}}(x, A), P^{r_{0}}(y, A)\right\}\right|<1 .
\]
- Taking the maximum over all \(A \neq \emptyset\) shows that
\[
D_{x, y}\left(r_{0}\right)=\operatorname{TV}\left(X_{r_{0}}\left|X_{0}=x, X_{r_{0}}\right| X_{0}=y\right)<1 .
\]
- Finally, taking the maximum over all \(x, y \in S\), we have \(D\left(r_{0}\right)<1\).~~~~

