
STATS 217: Introduction to Stochastic Processes I

Lecture 1
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Course information

Instructor: Vishesh Jain

TAs: Sohom Bhattacharya, Michael Feldman, Disha Ghandwani.

Final grade based entirely on 9 problem sets. See “Grading” section of
course website for policies and further details.

Course website: jainvishesh.github.io/STATS217_Winter2021.html.

There are also associated Canvas and Gradescope sites that you should be
enrolled in.

Lecture 1 STATS 217 2 / 13

jainvishesh.github.io/STATS217_Winter2021.html


Symmetric simple random walk

X1,X2, . . . is a sequence of independent and identically distributed
(i.i.d.) Rademacher random variables i.e.,

P[Xi = 1] = P[Xi = −1] = 1/2 ∀i .

Interpretation: a gambler places bets on the outcome of fair coin tosses. If
the outcome is heads, she wins $1 and if the outcome is tails, she loses $1.
Xi records the payout to the gambler in the i th round.

Denote the initial wealth of the gambler by S0.

So, after n rounds of betting, the wealth of the gambler is

Sn := S0 + X1 + · · ·+ Xn.
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Symmetric simple random walk

Question 1: What is the probability that the gambler is up by $100 before
being down by $100?

Question 2: What is the probability that the gambler is up by $200 before
being down by $100?

Question 3: Suppose that the gambler stops playing once she is either up by
$200 or down by $100. What is the expected number of rounds she plays?

Question 4: Suppose that the gambler stops playing once she is down by
$100. What is the probability that she stops? What is the expected number
of rounds she plays?

Question 5: How do these answers change if P[Xi = 1] = 0.49?
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Hitting time

Given integers A > 0,B > 0, let

τ = τ(A,−B) := min{n ≥ 0 : Sn = A or Sn = −B}.

On the homework, you will show that for any A > 0,B > 0,

P[τ <∞] = 1.

For −B ≤ k ≤ A, define

f (k) := P[Sτ = A | S0 = k].

Question 1: A = 100,B = 100, find f (0).

Question 2: A = 200,B = 100, find f (0).

Question 3: A = 200,B = 100, find E[τ | S0 = 0].

Question 4: “A =∞”, B = 100, find (i) P[τ <∞ | S0 = 0] and (ii)
E[τ | S0 = 0].
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First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.
For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x . Then, the above relation gives f (−B + 2) = 2x .
Similarly,

f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.

For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x . Then, the above relation gives f (−B + 2) = 2x .
Similarly,

f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.
For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k ,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x . Then, the above relation gives f (−B + 2) = 2x .
Similarly,

f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.
For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k ,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x . Then, the above relation gives f (−B + 2) = 2x .
Similarly,

f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.
For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k ,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x .

Then, the above relation gives f (−B + 2) = 2x .
Similarly,

f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.
For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k ,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x . Then, the above relation gives f (−B + 2) = 2x .

Similarly,
f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.
For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k ,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x . Then, the above relation gives f (−B + 2) = 2x .
Similarly,

f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

Recall
f (k) := P[Sτ = A | S0 = k] ∀ − B ≤ k ≤ A.

Clearly f (A) = 1, f (−B) = 0.
For every −B < k < A,

f (k) =
1

2
· P[Sτ = A | S0 = k ,X1 = 1] +

1

2
· P[Sτ = A | S0 = k,X1 = −1]

=
1

2
· f (k + 1) +

1

2
· f (k − 1).

Let f (−B + 1) = x . Then, the above relation gives f (−B + 2) = 2x .
Similarly,

f (−B + `) = `x ∀0 ≤ ` ≤ A + B.

Since f (A) = 1, we must have

x =
1

A + B
.

Lecture 1 STATS 217 6 / 13



First step analysis

We have proved that

f (k) = P[Sτ = A | S0 = k] =
k + B

A + B
∀ − B ≤ k ≤ A.

Answer 1: A = 100,B = 100, f (0) = 1/2.

Answer 2: A = 200,B = 100, f (0) = 1/3.

Another interpretation of this scenario is the following: suppose Alice and
Bob bet on the outcomes of fair coin tosses. If the outcome is heads, then
Bob pays $1 to Alice, otherwise Alice pays $1 to Bob. If Alice starts with $A
and Bob starts with $B then the probability that Alice wins everything (‘Alice
ruins Bob’) is

A

A + B
.
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Application: symmetric simple random walk on the circle

Consider the symmetric simple random walk on the circle with n + 1 points,
starting from the point marked 0.

Image courtesy of user ‘mark’ on math.stackexchange.com
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Application: symmetric simple random walk on the circle

Similar to the homework exercise, it follows that with probability 1, the
random walk visits all points.

Therefore, some point other than 0 is the last point visited.

What is the probability that 1 is the last point visited?

P[1 is the last point visited] = P[2 is visited before 1]

= P[Sτ(n−1,−1)
= n − 1 | S0 = 0]

=
1

n
.

On the homework, you will show that for all 1 ≤ k ≤ n,

P[k is the last point visited] =
1

n
.
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First step analysis

Given integers A > 0,B > 0, let

τ := min{n ≥ 0 : Sn = A or Sn = −B}.

For −B ≤ k ≤ A, define

g(k) := E[τ | S0 = k].

Clearly, g(−B) = 0, g(A) = 0.

For −B < k < A, we have

g(k) =
1

2
E[τ | S0 = k,X1 = 1] +

1

2
E[τ | S0 = k,X1 = −1]

=
1

2
(g(k + 1) + 1) +

1

2
(g(k − 1) + 1)

=
1

2
g(k + 1) +

1

2
g(k − 1) + 1.
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First step analysis

Let (∆h)(k) := h(k + 1)− h(k).

Then, for all −B < k < A

(∆(∆g))(k − 1) = (∆g)(k)− (∆g)(k − 1)

= g(k + 1)− g(k)− g(k) + g(k − 1)

= g(k + 1)− (g(k + 1) + g(k − 1) + 2) + g(k − 1)

= −2.

“Second derivative of g is -2” so g(k) = −k2 + Dk + C .

Using boundary conditions,

g(k) = −(k − A)(k + B).
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First step analysis

We have proved that

g(k) = E[τ | S0 = k] = −(k + A)(k − B).

Answer 3: A = 200,B = 100, g(0) = 2× 104.

Answer 4 (ii): “A =∞”, B = 100, g(0) =∞.

Formally, let

τ1 = min{n ≥ 0 : Sn = −100},
τ2(`) = min{n ≥ 0 : Sn = −100 or Sn = `} ∀` ≥ 1.

Then, for all ` ≥ 1, τ2(`) ≤ τ1 so that

100` = E[τ2(`) | S0 = 0] ≤ E[τ1 | S0 = 0],

and now take `→∞.
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First step analysis

In words, for a symmetric simple random walk starting at 0, the expected time
to hit −100 is infinite! Of course, there is nothing special about −100 here.

On the other hand, Answer 4(i):

P[Sn visits − 100] ≥ P[Sτ2(`) = −100]

=
`

100 + `

→ 1 as `→∞.

So, a symmetric simple random walk starting at 0 visits −100 with
probability 1. Again, there is nothing special about −100 here.
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