STATS 217: Introduction to Stochastic Processes I

Lecture 20

Convergence theorem

- Last time, we proved the convergence theorem for irreducible, aperiodic, finite-state Markov chains.
- Let (X_n)_{n≥0} be a DTMC on S with transition matrix P. Suppose that P is irreducible and aperiodic with unique stationary distribution π.
- Let

$$\Delta(n) = \max_{x \in S} \Delta_x(n) = \max_{x \in S} \mathsf{TV}(X_n \mid X_0 = x, \pi).$$

• There exist constants $\epsilon > 0$ and C > 0 (depending on P) such that

$$\Delta(n) \leq C \cdot (1-\epsilon)^n.$$

Sub-multiplicativity

• In fact, we worked with the quantities

$$D_{x,y}(n) = \mathsf{TV}(X_n \mid X_0 = x, X_n \mid X_0 = y)$$

and

$$D(n) = \max_{x,y\in S} D_{x,y}(n).$$

We showed that

$$\Delta(n) \leq D(n) \leq 2\Delta(n)$$

for all integers $n \ge 0$ and that for any integers $s, t \ge 0$,

$$D(s+t) \leq D(s)D(t).$$

Mixing time

• For $\varepsilon \in [0,1]$, define the ε -mixing time of the chain to be

$$au_{\mathsf{mix}}(\varepsilon) := \min\{t : \Delta(t) \le \varepsilon\}.$$

- Since Δ(n+1) ≤ Δ(n) for all n ≥ 0, it follows that for any t ≥ τ_{mix}(ε) and for any x ∈ S,
 TV(X_t | X₀ = x, π) < ε.
- It is convenient to define

$$\tau_{\mathsf{mix}} := \tau_{\mathsf{mix}}(1/4).$$

• The choice of the constant 1/4 is not important and can be replaced by another constant which is strictly smaller than 1/2.

Mixing time

• The reason that it's often enough to look only at $\tau_{\rm mix}$ is because for any $\varepsilon\in(0,1),$

$$\tau_{\min}(\varepsilon) \leq \lceil \log_2 \varepsilon^{-1} \rceil \tau_{\min}.$$

Indeed,

$$egin{aligned} \Delta(\lceil \log_2 arepsilon^{-1}
ceil au_{\mathsf{mix}}) &\leq D(\lceil \log_2 arepsilon^{-1}
ceil au_{\mathsf{mix}}) & \leq D(au_{\mathsf{mix}})^{\lceil \log_2 arepsilon^{-1}
ceil} & \leq (2\Delta(au_{\mathsf{mix}}))^{\lceil \log_2 arepsilon^{-1}
ceil} & \leq 2^{-\lceil \log_2 arepsilon^{-1}
ceil} & \leq arepsilon. \end{aligned}$$

Coupling of Markov chains

- Consider a transition matrix P on a finite state space S.
- A coupling of Markov chains with transition matrix P and initial distributions μ and ν is a process

$$(\widehat{X}_t, \widehat{Y}_t)_{t=0}^\infty$$

such that for all $t \ge 0$,

$$egin{aligned} \widehat{X}_t &\sim (X_t \mid X_0 \sim \mu) \ \widehat{Y}_t &\sim (X_t \mid X_0 \sim
u) \,, \end{aligned}$$

and such that

$$\widehat{X}_t = \widehat{Y}_t \implies \widehat{X}_{t+1} = \widehat{Y}_{t+1}.$$

• We have already seen couplings of Markov chains in our proof of the convergence theorem

- As we will soon see, couplings of Markov chains are a useful tool to bound the mixing time in applications.
- This is due to the following: Let $(\widehat{X}_t, \widehat{Y}_t)$ be a coupling of two Markov chains with transition matrix P and with $\widehat{X}_0 = x$, $\widehat{Y}_0 = y$. Let

$$\tau_{\text{couple}} := \min\{t : \widehat{X}_t = \widehat{Y}_t\}.$$

Recall that

$$D_{x,y}(n) = \mathsf{TV}(X_n \mid X_0 = x, X_n \mid X_0 = y).$$

Then,

$$D_{x,y}(n) \leq \mathbb{P}[\tau_{\text{couple}} \geq n].$$

Coupling of Markov chains

- The proof is a direct application of the coupling lemma.
- Indeed, since $\widehat{X}_n \sim X_n \mid X_0 = x$ and $\widehat{Y}_n \sim X_n \mid X_0 = y$, we have

$$D_{x,y}(n) \leq \mathbb{P}[\widehat{X}_n \neq \widehat{Y}_n] \leq \mathbb{P}[\tau_{\text{couple}} \geq n].$$

• Therefore, by Markov's inequality,

$$D_{x,y}(4 \cdot \mathbb{E}[\tau_{\mathsf{couple}}]) \leq \mathbb{P}[\tau_{\mathsf{couple}} \geq 4 \cdot \mathbb{E}[\tau_{\mathsf{couple}}]] \leq \frac{1}{4}.$$

Example: Lazy random walk on the hypercube

- $S = \{0, 1\}^n$.
- The transitions are given as follows. Suppose the current state is x. With probability 1/2, the chain remains at x; with probability 1/2, it moves uniformly to one of the *n* possible vectors y which differ from x in exactly one coordinate.
- The transition matrix is clearly aperiodic and irreducible, and we have seen that the unique stationary distribution is the uniform distribution on $\{0,1\}^n$.
- Here is an equivalent description of the transitions: suppose the current state is x. We choose a coordinate $i \in \{1, ..., n\}$ uniformly at random and an unbiased bit $b \in \{0, 1\}$, also uniformly at random, and independent of the coordinate *i*.
- Then, we set the value of coordinate *i* to *b* and keep all other coordinates unchanged.

Example: Lazy random walk on the hypercube

- Given this alternate description, there is a natural choice of coupling: for the two chains started from x and y, use the same i and b at every step.
- Let τ denote the first time that each coordinate *i* has been chosen to be updated. Then, clearly, $\hat{X}_{\tau} = \hat{Y}_{\tau}$.
- Moreover, τ is exactly the first time to collect all n coupons in the coupon-collector problem and

$$\mathbb{P}[\tau > t] \le n \left(1 - \frac{1}{n}\right)^t \le n e^{-t/n},$$

which gives $\tau_{\text{mix}} \leq n \log n + n \log(1/4)$.

Example: Lazy random walk on the cycle

- The states of the *n*-cycle can be identified with \mathbb{Z}_n , the integers modulo *n*.
- The transitions are given as follows. Suppose that the current state is x.
 With probability 1/2, the chain remains at x; with probability p/2, it moves to x + 1; with probability q/2, it moves to x 1. Here, p + q = 1.
- Here is a natural choice of coupling: start the two chains at x and y. At each step, flip an unbiased coin. If the coin lands heads, then the x-chain stays put, and the y chain moves +1 with probability p and -1 with probability q. If the coin lands tails, then the y-chain stays put, and the x chain moves +1 with probability p and -1 with probability q.

Example: Lazy random walk on the cycle

- Let dist_t denote the (clockwise) distance between the states of the two chains at time t.
- Then, $(\text{dist}_t)_{t\geq 0}$ is a simple symmetric random walk on $\{0, \ldots, n\}$ with absorbing states 0 and *n*.
- From Gambler's ruin, we know that if the initial distance is k, then the expected time to absorption is $k(n-k) \le n^2/4$.
- Hence,

$$\tau_{\mathsf{mix}} \leq 4 \cdot \frac{n^2}{4} = n^2.$$