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Convergence theorem

Last time, we proved the convergence theorem for irreducible, aperiodic,
finite-state Markov chains.

Let (X,)n>0 be a DTMC on S with transition matrix P. Suppose that P is
irreducible and aperiodic with unique stationary distribution 7.

o Let

A(n) = max A, (n) = max TV(X, | Xo = x, 7).
(n) = max Ax(n) = maxTV(X, | Xo = x, )
@ There exist constants € > 0 and C > 0 (depending on P) such that

A(n) < C-(1—e).
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Sub-multiplicativity

@ In fact, we worked with the quantities
Dyy(n) =TV(Xa | Xo =x, X0 | Xo = y)

and
= D, .
D(n) max v(n)

@ We showed that
A(n) < D(n) <2A(n)

for all integers n > 0 and that for any integers s, t > 0,

D(s +t) < D(s)D(t).
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Mixing time

For € € [0, 1], define the e-mixing time of the chain to be

Tmix(€) 1= min{t : A(t) < e}.

Since A(n+ 1) < A(n) for all n > 0, it follows that for any t > 7ix(¢) and
for any x € S,
TV(X; | Xo =x,7) <e.

@ It is convenient to define
Tnix = Tmix(1/4).

The choice of the constant 1/4 is not important and can be replaced by
another constant which is strictly smaller than 1/2.
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Mixing time

@ The reason that it's often enough to look only at 7y is because for any
e €(0,1),
7-mi><(5) < |_|Og2 E_1-|7—mi><-

@ Indeed,
A([logy e Tmix) < D([logy €71 - Timix)
< D(Tmix)ﬂogzsfl]
< (28 (i) 0%
< p—[logy =]
<e.
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Coupling of Markov chains

o Consider a transition matrix P on a finite state space S.

@ A coupling of Markov chains with transition matrix P and initial
distributions 11 and v is a process

(X, Y2220
such that for all t > 0,

)A(tN(Xt|X0N/~L)
Yo~ (Xe | Xo ~v),
and such that N N N N
Xe =Yy = Xep1 = Yen-
@ We have already seen couplings of Markov chains in our proof of the

convergence theorem
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Coupling of Markov chains

@ As we will soon see, couplings of Markov chains are a useful tool to bound
the mixing time in applications.

@ This is due to the following: Let (Xt, Vt) be a coupling of two Markov chains
with transition matrix P and with Xo = x, Yp = y. Let

Teouple 1= min{t : Xy = Y;}.

Recall that
Dy y(n) = TV(X, | Xo = x, X, | Xo = y)-

Then,
va}’(n) < IP)[7-(:0up|e > n]-
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Coupling of Markov chains

@ The proof is a direct application of the coupling lemma.
@ Indeed, since )A(,, ~ Xp | Xo = x and \A/,, ~ Xp | Xo =y, we have

Dx,y(”) < ]P[Xn # ?n] < ]P[Tcouple > n]-

@ Therefore, by Markov's inequality,

1
DX,Y(4 . E[TCOllple]) < ]P[Tcouple >4 ]E[Tcouple]] < Z
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Example: Lazy random walk on the hypercube

S={0,1}".

The transitions are given as follows. Suppose the current state is x. With
probability 1/2, the chain remains at x; with probability 1/2, it moves
uniformly to one of the n possible vectors y which differ from x in exactly
one coordinate.

The transition matrix is clearly aperiodic and irreducible, and we have seen
that the unique stationary distribution is the uniform distribution on {0,1}".

Here is an equivalent description of the transitions: suppose the current state
is x. We choose a coordinate i € {1,..., n} uniformly at random and an
unbiased bit b € {0,1}, also uniformly at random, and independent of the
coordinate .

Then, we set the value of coordinate i/ to b and keep all other coordinates
unchanged.
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Example: Lazy random walk on the hypercube

@ Given this alternate description, there is a natural choice of coupling: for the
two chains started from x and y, use the same / and b at every step.

@ Let 7 denote the first time that each coordinate i has been chosen to be
updated. Then, clearly, X = Y

@ Moreover, T is exactly the first time to collect all n coupons in the
coupon-collector problem and

1 t
Plr>t]<n (1 — ) < ne~t/",
n

which gives Tix < nlogn+ nlog(1/4).
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Example: Lazy random walk on the cycle

@ The states of the n-cycle can be identified with Z,, the integers modulo n.

@ The transitions are given as follows. Suppose that the current state is x.
With probability 1/2, the chain remains at x; with probability p/2, it moves
to x + 1; with probability q/2, it moves to x — 1. Here, p+ g = 1.

@ Here is a natural choice of coupling: start the two chains at x and y. At each
step, flip an unbiased coin. If the coin lands heads, then the x-chain stays
put, and the y chain moves 41 with probability p and —1 with probability g.
If the coin lands tails, then the y-chain stays put, and the x chain moves +1
with probability p and —1 with probability g.
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Example: Lazy random walk on the cycle

o Let dist; denote the (clockwise) distance between the states of the two
chains at time t.

@ Then, (dist;):>0 is a simple symmetric random walk on {0, ..., n} with
absorbing states 0 and n.

@ From Gambler's ruin, we know that if the initial distance is k, then the
expected time to absorption is k(n — k) < n?/4.

@ Hence,
2

n
Tmix§4'I:n2~

SIS B Y



