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Convergence theorem

Last time, we proved the convergence theorem for irreducible, aperiodic,
finite-state Markov chains.

Let (X,)n>0 be a DTMC on S with transition matrix P. Suppose that P is
irreducible and aperiodic with unique stationary distribution 7.

o Let

A(n) = max A, (n) = max TV(X, | Xo = x, 7).
(n) = max Ax(n) = maxTV(X, | Xo = x, )
@ There exist constants € > 0 and C > 0 (depending on P) such that

A(n) < C-(1—e).
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Sub-multiplicativity

@ In fact, we worked with the quantities
Dyy(n) =TV(Xa | Xo =x, X0 | Xo = y)

and
= D, .
D(n) max v(n)

@ We showed that
A(n) < D(n) <2A(n)

for all integers n > 0 and that for any integers s, t > 0,

D(s +t) < D(s)D(t).
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Mixing time

e For € € [0, 1], define the e-mixing time of the chain to be

Tmix(€) 1= min{t : A(t) < e}.
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|
Mixing time

e For € € [0, 1], define the e-mixing time of the chain to be

Tmix(€) 1= min{t : A(t) < e}.

@ Since A(n+ 1) < A(n) for all n > 0, it follows that for any t > Tmix(€) and
for any x € S,
TV(X: | Xo = x,7) <e.
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Mixing time

e For € € [0, 1], define the e-mixing time of the chain to be

Tmix(€) 1= min{t : A(t) < e}.

@ Since A(n+ 1) < A(n) for all n > 0, it follows that for any t > Tmix(€) and
for any x € S,
TV(X; | Xo =x,7) <e.

@ It is convenient to define
Tnix = Tmix(1/4).
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Mixing time

For € € [0, 1], define the e-mixing time of the chain to be

Tmix(€) 1= min{t : A(t) < e}.

Since A(n+ 1) < A(n) for all n > 0, it follows that for any t > 7ix(¢) and
for any x € S,
TV(X; | Xo =x,7) <e.

@ It is convenient to define
Tnix = Tmix(1/4).

The choice of the constant 1/4 is not important and can be replaced by
another constant which is strictly smaller than 1/2.
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Mixing time

@ The reason that it's often enough to look only at 7y is because for any

e €(0,1),
7-mi><(5) < |_|Og2 E_1-|7—mi><-
— 110
e-q. &=
j Sy < 100 Teoncx (V)
T(\p(% (2 -
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Mixing time

@ The reason that it's often enough to look only at 7y is because for any

e €(0,1),
7-mi><(5) < |_|Og2 E_1-|7—mi><-
<= D =12A
@ Indeed, U’\_\ (n) (nl

A([logy e Tmix) < D([logy €71 - Timix)
AV < D(7mix) 102 e !

D(sae) = 00 P

pCes) & )
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Mixing time

@ The reason that it's often enough to look only at 7y is because for any
e €(0,1),
Tmix(€) < [logy €™ Tmix-

@ Indeed,

A([log, 5_117mix) < D(Jlog, 5_1] * Tmix)
< D(Tmix)ﬂogzs”]

1

< (2A(Tmix)) [logy e™ "]

A(twu'ﬂ) v"\
:) 2/,\ ((N\\'X‘ < \/L
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Mixing time

@ The reason that it's often enough to look only at 7y is because for any

e €(0,1),
7-mi><(5) < |_|Og2 E_1-|7—mi><-
m on UPPA bound,
o Indeed, fwr i "f“"&l“ ‘OXOMP\U’
Yage could

A([logy e 7mix) < D([logy e - Tmix) be smaller.

< D(Tmix)“%sil] \“ ('/V\'r“’{f{- ,
< (2 (Timix)) 825 Pher\omw\”‘ .

< g-oge ]
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Mixing time

@ The reason that it's often enough to look only at 7y is because for any
e €(0,1),
7-mi><(5) < |_|Og2 E_1-|7—mi><-

@ Indeed,
A([logy e Tmix) < D([logy €71 - Timix)
< D(Tmix)ﬂogzsfl]
< (28 (i) 0%
< p—[logy =]
<e.
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Coupling of Markov chains

o Consider a transition matrix P on a finite state space S.

@ A coupling of Markov chains with transition matrix P and initial

distributions 11 and v is a process o Concrebanest

(Re, V)2, ek oF
Mz R ‘M"g
such that for all t > 0, i _
V= ‘(1

X~ (Xe | Xo ~ p)
Y~ (Xe | Xo ~ ),
and such that R g jot\l ;{@;L/fkﬁ
Xe=Y: = Xes1 = Yeur. o

~ geasinable”
Cou‘)‘(‘r‘a-c .
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Coupling of Markov chains

o Consider a transition matrix P on a finite state space S.

@ A coupling of Markov chains with transition matrix P and initial
distributions 11 and v is a process

(X, Y2220
such that for all t > 0,
)A(tN(Xt|X0N/~L)
Ve~ (Xe | Xo ~v),

and such that R R R R
Xe =Yy = Xep1 = Yen-

@ We have already seen couplings of Markov chains in our proof of the
convergence theorem TS in dS Case, wh usd
e cou‘l\u‘N\ e a

6/12
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Coupling of Markov chains exi rence - cwp\\‘ngi
wl certarn ’)FYD\)HW‘Z .

@ As we will soon see, couplings of Markov chains are a useful tool to bound
the mixing time in applications.
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Coupling of Markov chains

@ As we will soon see, couplings of Markov chains are a useful tool to bound
the mixing time in applications.

@ This is due to the following: Let (Xt, Vt) be a coupling of two Markov chains
with transition matrix P and with Xo = x, Yp = y. Let

Teouple 1= min{t : Xy = Y;}.

A~ A ~ A~

% = Yp D ¥enm = Tew
w kNnow Ao\ A
~/
\

A
&7/ ’Ccouph ’;‘) Xt: t -
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Coupling of Markov chains

@ As we will soon see, couplings of Markov chains are a useful tool to bound
the mixing time in applications.

@ This is due to the following: Let (Xt, Vt) be a coupling of two Markov chains
with transition matrix P and with Xo = x, Yo =y. Let chear we will

— i LY v conthnek o
Teouple 1= min{t : Xy = Y;}. ok - o~ hafd
Recall that 4o analy e

DXvY(n) = TV(Xn ‘ XO = X,Xn | XO = y) Coup\l‘\l\ A8
Which ¥ne di

Then, w
C'(ou\ﬂ\t Can

D&y(”) < P[Tcouple > n]- 0@
(VA

_ be S*S’Vd"ﬂd.

& then vSse A = DIN) = max ’Dxrj('\)-
er
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Coupling of Markov chains

@ The proof is a direct application of the coupling lemma.
@ Indeed, since )A(,, ~ Xp | Xo = x and \A/,, ~ Xp | Xo =y, we have

Dx,y(”) < ]P[Xn # ?n] < ]P[Tcouple > n]-
(VA VAVAVA Vg

"

'T‘\)’(Xr\ (Xo:r)(”)(m\x°—-])

n

v (G B = 8 TRV

8/12
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Coupling of Markov chains

@ The proof is a direct application of the coupling lemma.
@ Indeed, since )A(,, ~ Xp | Xo = x and \A/,, ~ Xp | Xo =y, we have

Dx,y(”) < ]P[Xn # ?n] < ]P[Tcouple > n]-
A~ -

@ Therefore, by Markov's inequality,

1
DX,Y(4 . E[TCOllple]) < ]P[Tcouple >4 ]E[Tcouple]] < Z

’P\\)j m om = .L\ \© C Zco\,i)\e]

SIS B T3



Example: Lazy random walk on the hypercube
/,7, ©oo
l n= 3 7 L ™
. ool
o 5=1{0,1}". \}j/ 100 ofo
@ The transitions are given as follows. Suppose the current state is x. With
probability 1/2, the chain remains at x; with probability 1/2, it moves
uniformly to one of the n possible vectors y which differ from x in exactly
one coordinate.

@ The transition matrix is clearly aperiodic and irreducible, and we have seen
that the unique stationary distribution is the uniform distribution on {0,1}".

_y e w M P S*W‘J
Tmi\x(e\ n~ M\Oﬂy\’

— we will vse “he Cou‘o\wj Ye chnigue.
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Example: Lazy random walk on the hypercube

S={0,1}".

The transitions are given as follows. Suppose the current state is x. With
probability 1/2, the chain remains at x; with probability 1/2, it moves
uniformly to one of the n possible vectors y which differ from x in exactly
one coordinate.

The transition matrix is clearly aperiodic and irreducible, and we have seen
that the unique stationary distribution is the uniform distribution on {0,1}".

Here is an equivalent description of the transitions: suppose the current state
is x. We choose a coordinate i € {1,..., n} uniformly at random and an
unbiased bit b € {0,1}, also uniformly at random, and independent of the
coordinate i. (i, %
Then, we set the value of coordinate i/ to b and keep all other coordinates
h d. v

unchange (X EH) = L +ne chain

( ) (x ¢ 1ZL Sreys at Xe

% . .

AR )y ¥ & b= ()
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=\ 000 '—/L '5/

oo o6id 00l

@ Given this alternate description, there is a natural choice of coupling: for the

two chains started from x and y, use the same / and b at every step.
n

Ko~ SPER
%’rs\— R jmﬂro’re ()

(/7\\\)\‘: 3 = ((\(\\)\'-' b
(%= rpute R gy J#
A N A N
Xe = Ye o) Yert = Yixl

we want -~ undecstond E‘aup't,
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Example: Lazy random walk on the hypercube

@ Given this alternate description, there is a natural choice of coupling: for the
two chains started from x and y, use the same / and b at every step.

@ Let 7 denote the first time that each coordinate i has been chosen to be
updated. Then, clearly, X = Y

wher “Y‘MH coord ¢ (/\
e sel- (7(&,,\ = B’_’ \\)E“">
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Example: Lazy random walk on the hypercube

@ Given this alternate description, there is a natural choice of coupling: for the
two chains started from x and y, use the same / and b at every step.

@ Let 7 denote the first time that each coordinate i has been chosen to be
updated. Then, clearly, X = Y

@ Moreover, T is exactly the first time to collect all n coupons in the
coupon-collector problem and we hove o touflons

Plr > t] %‘(1 - i)t < ne~t/n,

N\
) Tvo\ Hhotr
vnon (0\:[’"‘ N
bound hat not ean

cotlacked 1q Ime
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Example: Lazy random walk on the hypercube

@ Given this alternate description, there is a natural choice of coupling: for the
two chains started from x and y, use the same / and b at every step.

@ Let 7 denote the first time that each coordinate i has been chosen to be
updated. Then, clearly, X = Y

@ Moreover, T is exactly the first time to collect all n coupons in the
coupon-collector problem and

1 t
Plr>t]<n (1 — ) < ne~t/",
n

which gives Tix < nlogn+ nlog(1/4). _
—_— TM("A‘
Tonvx(e) < M\ﬁ“ +’“‘°j(‘/2) ~ y rlog .

— -
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Example: Lazy random walk on the Eycle

< x
*1
*
-1
7(0

@ The states of the n-cycle can be identified with Z,, the integers modulo n.
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Example: Lazy random walk on the cycle

@ The states of the n-cycle can be identified with Z,, the integers modulo n.

@ The transitions are given as follows. Suppose that the current state is x.
With probability 1/2, the chain remains at x; with probability p/2, it moves
to x + 1; with probability q/2, it moves to x — 1. Here, p+ g = 1.

g (Fapnehe 1t en
N“d QI\- oxf 9/L
-

73 Py
<

' g| o
—) N\\'X\'f\j H\N\L )
- AJ avr, W wel —F\r\d\ a (ouplmd_'
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Example: Lazy random walk on the cycle

@ The states of the n-cycle can be identified with Z,, the integers modulo n.

@ The transitions are given as follows. Suppose that the current state is x.
With probability 1/2, the chain remains at x; with probability p/2, it moves
to x + 1; with probability q/2, it moves to x — 1. Here, p+ g = 1.

@ Here is a natural choice of coupling: start the two chains at x and y. At each
step, flip an unbiased coin. If the coin lands heads, then the x-chain stays
put, and the y chain moves 41 with probability p and —1 with probability g.
If the coin lands tails, then the y-chain stays put, and the x chain moves +1
with probability p and —1 with probability g.

° (s Ans @ o UP\\'V\ 7

. Stayeng nhere qou cRe : o
cons der s “3‘1 th

the x-chodn —\) ~4 &)y
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Example: Lazy random walk on the cycle

what s Ahe  AShbohon o{_

Trouple N

o Let dist; denote the (clockwise) distance between the states of the two

chains at time t.

N\
d\'gk‘,‘ 7\3/ -

.
0=~

N
*e

ik,

6x  aepach hewne

Ask o =(Cdske +!
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f/ .\\
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Ve Xe
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A
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e wef
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Example: Lazy random walk on the cycle disk, 217

o Let dist; denote the (clockwise) distance between the states of the two
chains at time t.

@ Then, (dist;):>0 is a simple symmetric random walk on {0, ..., n} with
absorbing states 0 and n.
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Example: Lazy random walk on the cycle

o Let dist; denote the (clockwise) distance between the states of the two
chains at time t.

@ Then, (dist;):>0 is a simple symmetric random walk on {0, ..., n} with
absorbing states 0 and n.

@ From Gambler's ruin, we know that if the initial distance is k, then the
expected time to absorption is k(n — k) < n?/4.

@ Hence,
2

n
Tmix§4'I:n2~

g,
05 Feas 6 ssd  Ssund .
:‘gg of 4o a cnstonk
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