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Convergence theorem

Last time, we proved the convergence theorem for irreducible, aperiodic,
finite-state Markov chains.

Let (Xn)n≥0 be a DTMC on S with transition matrix P. Suppose that P is
irreducible and aperiodic with unique stationary distribution π.

Let
∆(n) = max

x∈S
∆x(n) = max

x∈S
TV(Xn | X0 = x , π).

There exist constants ε > 0 and C > 0 (depending on P) such that

∆(n) ≤ C · (1− ε)n.
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Sub-multiplicativity

In fact, we worked with the quantities

Dx,y (n) = TV(Xn | X0 = x ,Xn | X0 = y)

and
D(n) = max

x,y∈S
Dx,y (n).

We showed that
∆(n) ≤ D(n) ≤ 2∆(n)

for all integers n ≥ 0 and that for any integers s, t ≥ 0,

D(s + t) ≤ D(s)D(t).
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Mixing time

For ε ∈ [0, 1], define the ε-mixing time of the chain to be

τmix(ε) := min{t : ∆(t) ≤ ε}.

Since ∆(n + 1) ≤ ∆(n) for all n ≥ 0, it follows that for any t ≥ τmix(ε) and
for any x ∈ S ,

TV(Xt | X0 = x , π) ≤ ε.

It is convenient to define
τmix := τmix(1/4).

The choice of the constant 1/4 is not important and can be replaced by
another constant which is strictly smaller than 1/2.
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Mixing time

The reason that it’s often enough to look only at τmix is because for any
ε ∈ (0, 1),

τmix(ε) ≤ dlog2 ε
−1eτmix.

Indeed,

∆(dlog2 ε
−1eτmix) ≤ D(dlog2 ε

−1e · τmix)

≤ D(τmix)dlog2 ε
−1e

≤ (2∆(τmix))dlog2 ε
−1e

≤ 2−dlog2 ε
−1e

≤ ε.
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Coupling of Markov chains

Consider a transition matrix P on a finite state space S .

A coupling of Markov chains with transition matrix P and initial
distributions µ and ν is a process

(X̂t , Ŷt)
∞
t=0

such that for all t ≥ 0,

X̂t ∼ (Xt | X0 ∼ µ)

Ŷt ∼ (Xt | X0 ∼ ν) ,

and such that
X̂t = Ŷt =⇒ X̂t+1 = Ŷt+1.

We have already seen couplings of Markov chains in our proof of the
convergence theorem
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Coupling of Markov chains

As we will soon see, couplings of Markov chains are a useful tool to bound
the mixing time in applications.

This is due to the following: Let (X̂t , Ŷt) be a coupling of two Markov chains

with transition matrix P and with X̂0 = x , Ŷ0 = y . Let

τ couple := min{t : X̂t = Ŷt}.

Recall that
Dx,y (n) = TV(Xn | X0 = x ,Xn | X0 = y).

Then,
Dx,y (n) ≤ P[τcouple ≥ n].
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Coupling of Markov chains

The proof is a direct application of the coupling lemma.

Indeed, since X̂n ∼ Xn | X0 = x and Ŷn ∼ Xn | X0 = y , we have

Dx,y (n) ≤ P[X̂n 6= Ŷn] ≤ P[τcouple ≥ n].

Therefore, by Markov’s inequality,

Dx,y (4 · E[τcouple]) ≤ P[τcouple ≥ 4 · E[τcouple]] ≤
1

4
.
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Dx,y (n) ≤ P[X̂n 6= Ŷn] ≤ P[τcouple ≥ n].

Therefore, by Markov’s inequality,

Dx,y (4 · E[τcouple]) ≤ P[τcouple ≥ 4 · E[τcouple]] ≤
1

4
.

Lecture 20 STATS 217 8 / 12



Example: Lazy random walk on the hypercube

S = {0, 1}n.

The transitions are given as follows. Suppose the current state is x . With
probability 1/2, the chain remains at x ; with probability 1/2, it moves
uniformly to one of the n possible vectors y which differ from x in exactly
one coordinate.

The transition matrix is clearly aperiodic and irreducible, and we have seen
that the unique stationary distribution is the uniform distribution on {0, 1}n.

Here is an equivalent description of the transitions: suppose the current state
is x . We choose a coordinate i ∈ {1, . . . , n} uniformly at random and an
unbiased bit b ∈ {0, 1}, also uniformly at random, and independent of the
coordinate i .

Then, we set the value of coordinate i to b and keep all other coordinates
unchanged.
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Example: Lazy random walk on the hypercube

Given this alternate description, there is a natural choice of coupling: for the
two chains started from x and y , use the same i and b at every step.

Let τ denote the first time that each coordinate i has been chosen to be
updated. Then, clearly, X̂τ = Ŷτ .

Moreover, τ is exactly the first time to collect all n coupons in the
coupon-collector problem and

P[τ > t] ≤ n

(
1− 1

n

)t

≤ ne−t/n,

which gives τmix ≤ n log n + n log(1/4).
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Example: Lazy random walk on the cycle

The states of the n-cycle can be identified with Zn, the integers modulo n.

The transitions are given as follows. Suppose that the current state is x .
With probability 1/2, the chain remains at x ; with probability p/2, it moves
to x + 1; with probability q/2, it moves to x − 1. Here, p + q = 1.

Here is a natural choice of coupling: start the two chains at x and y . At each
step, flip an unbiased coin. If the coin lands heads, then the x-chain stays
put, and the y chain moves +1 with probability p and −1 with probability q.
If the coin lands tails, then the y -chain stays put, and the x chain moves +1
with probability p and −1 with probability q.
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Example: Lazy random walk on the cycle

Let distt denote the (clockwise) distance between the states of the two
chains at time t.

Then, (distt)t≥0 is a simple symmetric random walk on {0, . . . , n} with
absorbing states 0 and n.

From Gambler’s ruin, we know that if the initial distance is k, then the
expected time to absorption is k(n − k) ≤ n2/4.

Hence,

τmix ≤ 4 · n
2

4
= n2.
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