STATS 217: Introduction to Stochastic Processes I

Lecture 20

Convergence theorem

- Last time, we proved the convergence theorem for irreducible, aperiodic, finite-state Markov chains.
- Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on S with transition matrix P. Suppose that P is irreducible and aperiodic with unique stationary distribution π.
- Let

$$
\Delta(n)=\max _{x \in S} \Delta_{x}(n)=\max _{x \in S} \operatorname{TV}\left(X_{n} \mid X_{0}=x, \pi\right) .
$$

- There exist constants $\epsilon>0$ and $C>0$ (depending on P) such that

$$
\Delta(n) \leq C \cdot(1-\epsilon)^{n} .
$$

Sub-multiplicativity

- In fact, we worked with the quantities

$$
D_{x, y}(n)=\operatorname{TV}\left(X_{n}\left|X_{0}=x, X_{n}\right| X_{0}=y\right)
$$

and

$$
D(n)=\max _{x, y \in S} D_{x, y}(n) .
$$

- We showed that

$$
\Delta(n) \leq D(n) \leq 2 \Delta(n)
$$

for all integers $n \geq 0$ and that for any integers $s, t \geq 0$,

$$
D(s+t) \leq D(s) D(t) .
$$

Mixing time

- For $\varepsilon \in[0,1]$, define the ε-mixing time of the chain to be

$$
\tau_{\text {mix }}(\varepsilon):=\min \{t: \Delta(t) \leq \varepsilon\} .
$$

Mixing time

- For $\varepsilon \in[0,1]$, define the ε-mixing time of the chain to be

$$
\tau_{\text {mix }}(\varepsilon):=\min \{t: \Delta(t) \leq \varepsilon\} .
$$

- Since $\Delta(n+1) \leq \Delta(n)$ for all $n \geq 0$, it follows that for any $t \geq \tau_{\text {mix }}(\varepsilon)$ and for any $x \in S$,

$$
\operatorname{TV}\left(X_{t} \mid X_{0}=x, \pi\right) \leq \varepsilon
$$

Mixing time

- For $\varepsilon \in[0,1]$, define the ε-mixing time of the chain to be

$$
\tau_{\text {mix }}(\varepsilon):=\min \{t: \Delta(t) \leq \varepsilon\} .
$$

- Since $\Delta(n+1) \leq \Delta(n)$ for all $n \geq 0$, it follows that for any $t \geq \tau_{\text {mix }}(\varepsilon)$ and for any $x \in S$,

$$
\operatorname{TV}\left(X_{t} \mid X_{0}=x, \pi\right) \leq \varepsilon
$$

- It is convenient to define

$$
\tau_{\text {mix }}:=\tau_{\text {mix }}(1 / 4) .
$$

Mixing time

- For $\varepsilon \in[0,1]$, define the ε-mixing time of the chain to be

$$
\tau_{\text {mix }}(\varepsilon):=\min \{t: \Delta(t) \leq \varepsilon\} .
$$

- Since $\Delta(n+1) \leq \Delta(n)$ for all $n \geq 0$, it follows that for any $t \geq \tau_{\text {mix }}(\varepsilon)$ and for any $x \in S$,

$$
\operatorname{TV}\left(X_{t} \mid X_{0}=x, \pi\right) \leq \varepsilon
$$

- It is convenient to define

$$
\tau_{\text {mix }}:=\tau_{\text {mix }}(1 / 4) .
$$

- The choice of the constant $1 / 4$ is not important and can be replaced by another constant which is strictly smaller than $1 / 2$.

Mixing time

- The reason that it's often enough to look only at $\tau_{\text {mix }}$ is because for any $\varepsilon \in(0,1)$,

$$
\begin{gathered}
\tau_{\text {mix }}(\varepsilon) \leq\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }} \\
\varepsilon=2^{-100} \\
\tau_{\text {mix }}\left(2^{-100}\right) \leq 100 \tau_{\text {mix }}(1 / 4)
\end{gathered}
$$

Mixing time

- The reason that it's often enough to look only at $\tau_{\text {mix }}$ is because for any $\varepsilon \in(0,1)$,

$$
\begin{aligned}
& \tau_{\text {mix }}(\varepsilon) \leq\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }} \\
& \underset{(n)}{\Delta} \leq \underset{(n)}{D} \leq 2 \Delta \\
&(n)
\end{aligned}
$$

- Indeed,

$$
\begin{aligned}
& \Delta\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }}\right) \leq D\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \cdot \tau_{\text {mix }}\right) \\
& \leq D\left(\tau_{\text {mix }}\right)^{\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \\
& D(S+t) \leq D(S) D(t) \\
& D(k s) \leq O(s)^{k}
\end{aligned}
$$

Mixing time

- The reason that it's often enough to look only at $\tau_{\text {mix }}$ is because for any $\varepsilon \in(0,1)$,

$$
\tau_{\text {mix }}(\varepsilon) \leq\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }} .
$$

- Indeed,

$$
\begin{aligned}
& \Delta\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }}\right) \leq D\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \cdot \tau_{\text {mix }}\right) \\
& \leq D\left(\tau_{\text {mix }}\right)^{\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \\
& \leq\left(2 \Delta\left(\tau_{\text {mix }}\right)\right)^{\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \\
& A\left(\bar{\tau}_{\text {mix }}\right) \leq 1 / 4 \\
& \Rightarrow 2 \Delta\left(\tau_{\text {mix }} \mid \leq 1 / 2\right.
\end{aligned}
$$

Mixing time

- The reason that it's often enough to look only at $\tau_{\text {mix }}$ is because for any $\varepsilon \in(0,1)$,

$$
\tau_{\text {mix }}(\varepsilon) \leq\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }}
$$

- Indeed,
this is an upper bound, fut in specific examples, this could

$$
\begin{array}{rlr}
\Delta\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }}\right) & \leq D\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \cdot \tau_{\text {mix }}\right) \quad \text { le smaller. } \\
& \leq D\left(\tau_{\text {mix }}\right)^{\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \quad \text { "'cut-off. } \\
& \leq\left(2 \Delta\left(\tau_{\text {mix }}\right)\right)^{\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \quad \text { phenomenon" } \\
& \leq 2^{-\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \quad
\end{array}
$$

Mixing time

- The reason that it's often enough to look only at $\tau_{\text {mix }}$ is because for any $\varepsilon \in(0,1)$,

$$
\tau_{\text {mix }}(\varepsilon) \leq\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }} .
$$

- Indeed,

$$
\begin{aligned}
\Delta\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \tau_{\text {mix }}\right) & \leq D\left(\left\lceil\log _{2} \varepsilon^{-1}\right\rceil \cdot \tau_{\text {mix }}\right) \\
& \leq D\left(\tau_{\text {mix }}\right)^{\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \\
& \leq\left(2 \Delta\left(\tau_{\text {mix }}\right)\right)^{\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \\
& \leq 2^{-\left\lceil\log _{2} \varepsilon^{-1}\right\rceil} \\
& \leq \varepsilon
\end{aligned}
$$

Coupling of Markov chains

- Consider a transition matrix P on a finite state space S.
- A coupling of Markov chains with transition matrix P and initial distributions μ and ν is a process

$$
\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)_{t=0}^{\infty}
$$

such that for all $t \geq 0$,
for concreteness

$$
\begin{aligned}
& \widehat{X}_{t} \sim\left(X_{t} \mid X_{0} \sim \mu\right) \\
& \widehat{Y}_{t} \sim\left(X_{t} \mid X_{0} \sim \nu\right)
\end{aligned}
$$

and such that

$$
\widehat{X}_{t}=\widehat{Y}_{t} \Longrightarrow \widehat{X}_{t+1}=\widehat{Y}_{t+1} .\left\{\begin{array}{c}
\text { going to be } \\
\text { sainsfied for } \\
\text { most } \\
\text { "Reasonable" } \\
\text { couplings. }
\end{array}\right.
$$

Coupling of Markov chains

- Consider a transition matrix P on a finite state space S.
- A coupling of Markov chains with transition matrix P and initial distributions μ and ν is a process

$$
\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)_{t=0}^{\infty}
$$

such that for all $t \geq 0$,

$$
\begin{aligned}
& \hat{X}_{t} \sim\left(X_{t} \mid X_{0} \sim \mu\right) \\
& \widehat{Y}_{t} \sim\left(X_{t} \mid X_{0} \sim \nu\right)
\end{aligned}
$$

and such that

$$
\widehat{X}_{t}=\widehat{Y}_{t} \Longrightarrow \widehat{X}_{t+1}=\widehat{Y}_{t+1}
$$

- We have already seen couplings of Markov chains in our proof of the convergence theorem
\longrightarrow in this case, we used the coupling lemma

Coupling of Markov chains

- As we will soon see, couplings of Markov chains are a useful tool to bound the mixing time in applications.

Coupling of Markov chains

- As we will soon see, couplings of Markov chains are a useful tool to bound the mixing time in applications.
- This is due to the following: Let $\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)$ be a coupling of two Markov chains with transition matrix P and with $\widehat{X}_{0}=x, \widehat{Y}_{0}=y$. Let

$$
\begin{gathered}
\tau_{\text {couple }}:=\min \left\{t: \widehat{X}_{t}=\hat{Y}_{t}\right\} . \\
\hat{X}_{t}=\hat{Y}_{t} \Rightarrow \hat{X}_{t+1}=\hat{Y}_{t+1}
\end{gathered}
$$

we know that

$$
\begin{aligned}
& \text { know that } \\
& t \geqslant \hat{\tau}_{\text {couple }} \Rightarrow \hat{x}_{t}=\hat{I}_{t} .
\end{aligned}
$$

Coupling of Markov chains

- As we will soon see, couplings of Markov chains are a useful tool to bound the mixing time in applications.
- This is due to the following: Let $\left(\widehat{X}_{t}, \widehat{Y}_{t}\right)$ be a coupling of two Markov chains with transition matrix P and with $\widehat{X}_{0}=x, \widehat{Y}_{0}=y$. Let idea: we will

$$
\tau_{\text {couple }}:=\min \left\{t: \widehat{X}_{t}=\widehat{Y}_{t}\right\}
$$ conshuct a not - too -hard

Recall that to analyse
Then, which the dis.

$$
\sim^{D_{x, y}(n) \leq \underline{\mathbb{P}\left[\tau_{\text {couple }} \geq n\right] .} \text { of } \begin{array}{l}
\bar{C}_{\text {couple }} \text { can } \\
\text { be studied } .
\end{array} .}
$$

$$
A \text { then use } \Delta(n) \leqslant D(n)=\max _{x, y} D x, y(n)
$$

Coupling of Markov chains

- The proof is a direct application of the coupling lemma.
- Indeed, since $\widehat{X}_{n} \sim X_{n} \mid X_{0}=x$ and $\widehat{Y}_{n} \sim X_{n} \mid X_{0}=y$, we have

$$
\begin{aligned}
& \quad \begin{array}{l}
D_{x, y}(n) \leq \mathbb{P}\left[\widehat{x}_{n} \neq \hat{Y}_{n}\right] \leq \mathbb{P}\left[\tau_{\text {couple }} \geq n\right] . \\
\operatorname{TV}\left(x_{n}\left|x_{0}=x, x_{n}\right| x_{0}=y\right) \\
\operatorname{TV}\left(\hat{x}_{n}^{\prime \prime}, \hat{Y}_{n}\right) \leq \mathbb{P}\left[\hat{x}_{n} \pm \hat{Y}_{n}\right]
\end{array}
\end{aligned}
$$

Coupling of Markov chains

- The proof is a direct application of the coupling lemma.
- Indeed, since $\widehat{X}_{n} \sim X_{n} \mid X_{0}=x$ and $\widehat{Y}_{n} \sim X_{n} \mid X_{0}=y$, we have

$$
D_{x, y}(n) \leq \mathbb{P}\left[\widehat{X}_{n} \neq \widehat{Y}_{n}\right] \leq \mathbb{P}\left[\tau_{\text {couple }} \geq n\right] .
$$

- Therefore, by Markov's inequality,

$$
D_{x, y}\left(4 \cdot \mathbb{E}\left[\tau_{\text {couple }}\right]\right) \leq \mathbb{P}\left[\tau_{\text {couple }} \geq 4 \cdot \mathbb{E}\left[\tau_{\text {couple }}\right]\right] \leq \frac{1}{4}
$$

plog in $n=4 \cdot \mathbb{E}\left[\tau_{\text {couple }}\right]$

Example: Lazy random walk on the hypercube

- $S=\{0,1\}^{n}$.

- The transitions are given as follows. Suppose the current state is x. With probability $1 / 2$, the chain remains at x; with probability $1 / 2$, it moves uniformly to one of the n possible vectors y which differ from x in exactly one coordinate.
- The transition matrix is clearly aperiodic and irreducible, and we have seen that the unique stationary distribution is the uniform distribution on $\{0,1\}^{n}$.
\rightarrow We want to study

$$
\tau_{\operatorname{mix}}(\varepsilon) \sim n \log n
$$

\rightarrow we will use the coupling technique.

Example: Lazy random walk on the hypercube

- $S=\{0,1\}^{n}$.
- The transitions are given as follows. Suppose the current state is x. With probability $1 / 2$, the chain remains at x; with probability $1 / 2$, it moves uniformly to one of the n possible vectors y which differ from x in exactly one coordinate.
- The transition matrix is clearly aperiodic and irreducible, and we have seen that the unique stationary distribution is the uniform distribution on $\{0,1\}^{n}$.
- Here is an equivalent description of the transitions: suppose the current state is x. We choose a coordinate $i \in\{1, \ldots, n\}$ uniformly at random and an unbiased bit $b \in\{0,1\}$, also uniformly at random, and independent of the coordinate i. (i, b)
- Then, we set the value of coordinate i to b and keep all other coordinates unchanged.

$$
\begin{aligned}
& \left(x_{t+1}\right)_{i}=b \\
& \left(x_{t+1}\right)_{j}=\left(x_{t}\right)_{j} \quad \forall j \neq i
\end{aligned}
$$

$$
\begin{aligned}
& \text { the chain } \\
& \text { stays at } x_{t} \\
& \Leftrightarrow x_{b}=\left(x_{t}\right)_{i}
\end{aligned}
$$

Example: Lazy random walk on the hypercube

$$
\begin{array}{lll}
i=1 & 000 \\
100 & 010 & 001
\end{array}
$$

- Given this alternate description, there is a natural choice of coupling: for the two chains started from x and y, use the same i and b at every step.

$$
r_{x_{0}}=x \quad \hat{y}_{0}=y
$$

first step: generate (i, b)

$$
\left\{\begin{array}{cc}
\left(\hat{x}_{1}\right)_{i}=b & \left(\hat{y}_{1}\right)_{i}=b \\
\left(\hat{x}_{1}\right)_{j}=x_{j} j \neq i & \left(\hat{y}_{1}\right)_{j}=y_{j} \quad j \neq i \\
\hat{x}_{t}=\hat{y}_{t} \Rightarrow \hat{x}_{t+1}=\hat{y}_{t+1}
\end{array}\right\}
$$

we want to understand Couple.

Example: Lazy random walk on the hypercube

- Given this alternate description, there is a natural choice of coupling: for the two chains started from x and y, use the same i and b at every step.
- Let τ denote the first time that each coordinate i has been chosen to be updated. Then, clearly, $\widehat{X}_{\tau}=\widehat{Y}_{\tau}$.
when we update coors i

$$
\begin{aligned}
& \text { when we update coors } \\
& \text { we set }\left(\hat{X}_{t+1}\right)_{i}=b=\left(\hat{Y}_{t+1}\right)
\end{aligned}
$$

Example: Lazy random walk on the hypercube

- Given this alternate description, there is a natural choice of coupling: for the two chains started from x and y, use the same i and b at every step.
- Let τ denote the first time that each coordinate i has been chosen to be updated. Then, clearly, $\widehat{X}_{\tau}=\widehat{Y}_{\tau}$.
- Moreover, τ is exactly the first time to collect all n coupons in the coupon-collector problem and we have n coupons

$$
\mathbb{P}[\tau>t] \underset{\sim}{\text { union }} \text { bound } \quad\left(1-\frac{1}{n}\right)^{t} \leq n e^{-t / n},
$$

Example: Lazy random walk on the hypercube

- Given this alternate description, there is a natural choice of coupling: for the two chains started from x and y, use the same i and b at every step.
- Let τ denote the first time that each coordinate i has been chosen to be updated. Then, clearly, $\widehat{X}_{\tau}=\widehat{Y}_{\tau}$.
- Moreover, τ is exactly the first time to collect all n coupons in the coupon-collector problem and

$$
\mathbb{P}[\tau>t] \leq n\left(1-\frac{1}{n}\right)^{t} \leq n e^{-t / n}
$$

which gives $\tau_{\text {mix }} \leq n \log n+n \log (1 / 4)$.

$$
\overline{\bar{c}}_{m i x}(\varepsilon) \leq n \log n+n \log (1 / \varepsilon) \sim \sim 1 / 2 n \log n
$$

Example: Lazy random walk on the cycle

- The states of the n-cycle can be identified with \mathbb{Z}_{n}, the integers modulo n.

Example: Lazy random walk on the cycle

- The states of the n-cycle can be identified with \mathbb{Z}_{n}, the integers modulo n.
- The transitions are given as follows. Suppose that the current state is x. With probability $1 / 2$, the chain remains at x; with probability $p / 2$, it moves to $x+1$; with probability $q / 2$, it moves to $x-1$. Here, $p+q=1$.

\rightarrow mixing time?
-) again, we will find a coupling.

Example: Lazy random walk on the cycle

- The states of the n-cycle can be identified with \mathbb{Z}_{n}, the integers modulo n.
- The transitions are given as follows. Suppose that the current state is x. With probability $1 / 2$, the chain remains at x; with probability $p / 2$, it moves to $x+1$; with probability $q / 2$, it moves to $x-1$. Here, $p+q=1$.
- Here is a natural choice of coupling: start the two chains at x and y. At each step, flip an unbiased coin. If the coin lands heads, then the x-chain stays put, and the y chain moves +1 with probability p and -1 with probability q. If the coin lands tails, then the y-chain stays put, and the x chain moves +1 with probability p and -1 with probability q.
- is this a coupling?

$$
\begin{aligned}
& \text { consider } \\
& \text { the } x \text {-chain } \rightarrow+1 / 2 \\
& \rightarrow 1: 9 / 2
\end{aligned}
$$

Example: Lazy random walk on the cycle
what is the dismibution of
couple?

- Let dist_{t} denote the (clockwise) distance between the states of the two chains at time t.

dist $_{t+1}$
at each time

$$
\operatorname{dist}_{t+1}= \begin{cases}\text { dist }_{t}+1 & : p / 2+9 / 2=1 / 2 \\ \operatorname{dist}_{t}-1 & : \not / 2+9 / 2=1 / 2\end{cases}
$$

$$
=d_{i s t_{t}-1}
$$

w.p. 9
if T
dis $t_{t+1}=$ dist $_{t-1}$

Example: Lazy random walk on the cycle

w. j. 9
dist t_{t}.

- Let dist $_{t}$ denote the (clockwise) distance between the states of the two chains at time t.
- Then, $\left(\text { dist }_{t}\right)_{t \geq 0}$ is a simple symmetric random walk on $\{0, \ldots, n\}$ with absorbing states 0 and n.

$$
\dot{0} i \cdots M_{k}-\dot{M}
$$

Example: Lazy random walk on the cycle

- Let dist_{t} denote the (clockwise) distance between the states of the two chains at time t.
- Then, $\left(\operatorname{dist}_{t}\right)_{t \geq 0}$ is a simple symmetric random walk on $\{0, \ldots, n\}$ with absorbing states 0 and n.
- From Gambler's ruin, we know that if the initial distance is k, then the expected time to absorption is $k(n-k) \leq n^{2} / 4$.
- Hence,

$$
\tau_{\operatorname{mix}} \leq 4 \cdot \frac{n^{2}}{4}=n^{2}
$$

is this o good bound?
yes up to a constant

