STATS 217: Introduction to Stochastic Processes I

Lecture 21

Stationary times

- Last time, we used the following description of the lazy random walk on the hypercube: suppose the current state is x and the current time is t. We choose a coordinate $i_{t+1} \in\{1, \ldots, n\}$ uniformly at random and an unbiased bit $b_{t+1} \in\{0,1\}$, also uniformly at random, and independently of the coordinate i_{t+1}. Then, we set the value of coordinate i_{t+1} to b_{t+1} and keep all other coordinates unchanged.
- Let $\tau_{\text {refresh }}$ be the first time that all coordinates have been chosen to be updated.
- Note that $\tau_{\text {refresh }}$ is a stopping time with respect to the collection of random tuples $\left\{\left(i_{k}, b_{k}\right)\right\}_{k \geq 1}$. (Why?)
- Moreover, note that $X_{\tau_{\text {refersh }}}$ is distributed uniformly on $\{0,1\}^{n}$. (Why?)

Strong stationary times

- $\tau_{\text {refresh }}$ is an example of a stationary time.
- By this, we mean a stopping time τ (with respect to the initial state x of the chain as well as any auxiliary randomness) which satisfies

$$
\mathbb{P}\left[X_{\tau}=y \mid X_{0}=x\right]=\pi(y) \quad \forall y \in S
$$

where π is the stationary distribution of the chain.

- Let $x \in S$ and consider the chain with initial state $X_{0}=x$. A stationary time τ for which τ and X_{τ} are independent i.e. for all integers t and $y \in S$

$$
\mathbb{P}\left[\tau=t, X_{\tau}=y \mid X_{0}=x\right]=\mathbb{P}\left[\tau=t \mid X_{0}=x\right] \cdot \pi(y)
$$

is called a strong stationary time for the starting state x.

- $\tau_{\text {refresh }}$ is an example of a strong stationary time for any starting state x. (Why?)

Strong stationary times

- A strong stationary time for the starting state x is a stopping time (with respect to the chain and auxiliary randomness) satisfying

$$
\mathbb{P}\left[\tau=t, X_{\tau}=y \mid X_{0}=x\right]=\mathbb{P}\left[\tau=t \mid X_{0}=x\right] \cdot \pi(y)
$$

- The property that will be useful to us is

$$
\mathbb{P}\left[\tau \leq t, X_{t}=y \mid X_{0}=x\right]=\mathbb{P}\left[\tau \leq t \mid X_{0}=x\right] \cdot \pi(y),
$$

which can be proved using the law of total probability.

Strong stationary times

Indeed,

$$
\begin{aligned}
\mathbb{P}\left[\tau \leq t, X_{t}=y \mid X_{0}=x\right] & =\sum_{s \leq t} \sum_{z \in S} \mathbb{P}\left[\tau=s, X_{t}=y, X_{s}=z \mid X_{0}=x\right] \\
& =\sum_{s \leq t} \sum_{z \in S} \mathbb{P}\left[\tau=s, X_{s}=z \mid X_{0}=x\right] \cdot P_{z, y} \\
& =\sum_{s \leq t} \sum_{z \in S}\left(\mathbb{P}\left[\tau=s \mid X_{0}=x\right] \cdot \pi(z)\right) P_{z, y} \\
& =\sum_{s \leq t} \mathbb{P}\left[\tau=s \mid X_{0}=x\right] \cdot \sum_{z \in S} \pi(z) P_{z, y} \\
& =\sum_{s \leq t} \mathbb{P}\left[\tau=s \mid X_{0}=x\right] \cdot \pi(y) \\
& =\mathbb{P}\left[\tau \leq t \mid X_{0}=x\right] \cdot \pi(y)
\end{aligned}
$$

Bounding the mixing time using strong stationary times

- Strong stationary times are also a useful tool for bounding the mixing time.

This is captured by the following:

- Suppose that τ is a strong stationary time for the starting state x. Then,

$$
\operatorname{TV}\left(X_{t} \mid X_{0}=x, \pi\right) \leq \mathbb{P}\left[\tau>t \mid X_{0}=x\right]
$$

- Note that

$$
\begin{aligned}
\operatorname{TV}\left(X_{t} \mid X_{0}=x, \pi\right) & =\sum_{y: \pi(y)>P_{x, y}^{t}}\left[\pi(y)-P_{x, y}^{t}\right] \\
& =\sum_{y: \pi(y)>P_{x, y}^{t}} \pi(y)\left(1-\frac{P_{x, y}^{t}}{\pi(y)}\right) \\
& \leq \max _{y \in S}\left(1-\frac{P_{x, y}^{t}}{\pi(y)}\right) .
\end{aligned}
$$

Bounding the mixing time using strong stationary times

- Hence, it will suffice to show that for all $y \in S$,

$$
1-\frac{P_{x, y}^{t}}{\pi(y)} \leq \mathbb{P}\left[\tau>t \mid X_{0}=x\right] .
$$

- We have

$$
\begin{aligned}
1-\frac{P_{x, y}^{t}}{\pi(y)} & =1-\frac{\mathbb{P}\left[X_{t}=y \mid X_{0}=x\right]}{\pi(y)} \\
& \leq 1-\frac{\mathbb{P}\left[X_{t}=y, \tau \leq t \mid X_{0}=x\right]}{\pi(y)} \\
& =1-\frac{\pi(y) \mathbb{P}\left[\tau \leq t \mid X_{0}=x\right]}{\pi(y)} \\
& =\mathbb{P}\left[\tau>t \mid X_{0}=x\right] .
\end{aligned}
$$

Example: top-to-random shuffle

- Consider a deck of n cards.
- At each step of the top-to-random shuffle, we take the top card, and place it in any of the n available positions.
- On the homework, you showed that this is an aperiodic and irreducible chain with the unique stationary distribution π given by the uniform distribution on all possible permutations of the n cards.
- Now, we will bound the mixing time by constructing a suitable strong stationary time.

Example: top-to-random shuffle

- Let $\tau_{\text {top }}$ be first time when the original bottom card has moved to the top.
- Then, $\tau=\tau_{\text {top }}+1$ is a strong stationary time.
- Clearly, this is a stopping time.
- The key to showing that it is a strong stationary time is the following observation, which can be proved by induction: let τ_{k} denote the first time when there are k cards under the original bottom card. Then, at $X_{\tau_{k}}$, all k ! permutations of these cards are equally likely. (Why?)
- Therefore, by the relationship between strong stationary times and total variation distance,

$$
\operatorname{TV}\left(X_{t} \mid X_{0}=x, \pi\right) \leq \mathbb{P}\left[\tau>t \mid X_{0}=x\right]
$$

Example: top-to-random shuffle

- Note that, when there are k cards under the bottom card, the probability that the top card goes under it is $(k+1) / n$.
- Therefore, we see that

$$
\tau \sim \operatorname{Geom}(1 / n)+\operatorname{Geom}(2 / n)+\cdots+\operatorname{Geom}(1)
$$

where the geometric random variables on the right hand side are independent. This is the same as the distribution of the coupon collector's time.

- Therefore, as for the lazy random walk on the hypercube, we get that

$$
\tau_{\text {mix }}(\varepsilon) \leq n \log n+n \log \left(\varepsilon^{-1}\right) .
$$

