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Stationary times

o Last time, we used the following description of the lazy random walk on the
hypercube: suppose the current state is x and the current time is t. We
choose a coordinate i1 € {1,...,n} uniformly at random and an unbiased
bit b1 € {0,1}, also uniformly at random, and independently of the
coordinate i;11. Then, we set the value of coordinate j;y1 to byr1 and keep
all other coordinates unchanged.
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Stationary times

o Last time, we used the following description of the lazy random walk on the
hypercube: suppose the current state is x and the current time is t. We
choose a coordinate i1 € {1,...,n} uniformly at random and an unbiased
bit b1 € {0,1}, also uniformly at random, and independently of the
coordinate i;11. Then, we set the value of coordinate j;y1 to byr1 and keep
all other coordinates unchanged.

@ Let Tiefresh be the first time that all coordinates have been chosen to be
updated.
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Stationary times

o Last time, we used the following description of the lazy random walk on the
hypercube: suppose the current state is x and the current time is t. We
choose a coordinate i1 € {1,...,n} uniformly at random and an unbiased
bit b1 € {0,1}, also uniformly at random, and independently of the
coordinate i;11. Then, we set the value of coordinate j;y1 to byr1 and keep
all other coordinates unchanged.

@ Let Tiefresh be the first time that all coordinates have been chosen to be
updated.

@ Note that Tyefresh iS a stopping time with respect to the collection of random
tuples {(ix, bx) }x>1. (Why?)
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o Last time, we used the following description of the lazy random walk on the
hypercube: suppose the current state is x and the current time is t. We
choose a coordinate i1 € {1,...,n} uniformly at random and an unbiased
bit b1 € {0,1}, also uniformly at random, and independently of the
coordinate i;11. Then, we set the value of coordinate j;y1 to byr1 and keep
all other coordinates unchanged.

@ Let Tiefresh be the first time that all coordinates have been chosen to be
updated.
@ Note that Tyefresh iS a stopping time with respect to the collection of random
tuples {(ix, bx) }x>1. (Why?)
is distributed uniformly on {0,1}". (Why?)
x C refresh o\_orjr\dﬁ oM\J o
T YU SRR
by where

(Y'Crz{bm\\(' = ? Ve MOK ¥

@ Moreover, note that X,

refresh

d re Q‘-‘g\/\ VS condonw
X Tr:?—ruh
STATS 217

2/10



| beqore
o . -Crk%\gsh s.k.
Strong stationary times . A

ek L‘:d'

@ Tiefresh IS an example of a stationary time.

@ By this, we mean a stopping time 7 (with respect to the initial state x of the
chain as well as any auxiliary randomness) which satisfies

PX: =y | Xo=x]=n(y) VyeS,

where 7 is the stationary distribution of the chain.
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Strong stationary times

@ Tiefresh IS an example of a stationary time.

@ By this, we mean a stopping time 7 (with respect to the initial state x of the
chain as well as any auxiliary randomness) which satisfies

PX; =y | Xo=x] =7(y) Vyes,

where 7 is the stationary distribution of the chain.

@ Let x € S and consider the chain with initial state Xp = x. A stationary time
7 for which 7 and X, are independent i.e. for all integers t and y € S

Blr=t.X =y | X =x]1=P[r =t | Xo=x] -7(y)

is called a strong stationary time for the starting state x.
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Strong stationary times

@ Tiefresh IS an example of a stationary time.

@ By this, we mean a stopping time 7 (with respect to the initial state x of the
chain as well as any auxiliary randomness) which satisfies

PX; =y | Xo=x] =7(y) Vyes,

where 7 is the stationary distribution of the chain.

@ Let x € S and consider the chain with initial state Xp = x. A stationary time
7 for which 7 and X, are independent i.e. for all integers t and y € S

Blr=t.X =y | X =x]1=P[r =t | Xo=x] -7(y)

is called a strong stationary time for the starting state x.

@ Trefresh 1S an example of a strong stationary time for any starting state x.
(Why?)

SIS B T



|
Strong stationary times

@ A strong stationary time for the starting state x is a stopping time (with
respect to the chain and auxiliary randomness) satisfying

Plr=t,X =y | Xo=x] =P[r =t | Xo = x]-7(y).
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Strong stationary times

@ A strong stationary time for the starting state x is a stopping time (with
respect to the chain and auxiliary randomness) satisfying

Plr=t,X =y | Xo=x] =P[r =t | Xo = x]-7(y).

\U + law uf-—lv\—aL ]M\M\‘I/"rg

@ The property that will be useful to us is
[Blr<tXo=y|Xo=xI=Flr<t|X=x ()]
vV~

which can be proved using the law of total probability.
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Strong stationary times

Indeed,

Plr<tXe=y|[Xo=x]=)_ Y Plr=sXe=y,X=2z|Xo=x]

s<t zeS
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Strong stationary times

Indeed,

Plr<tXe=y|[Xo=x]=)_ Y Plr=sXe=y,X=2z|Xo=x]

s<t zeS

:ZZP[TZS,XSZZ\XOZX]'PZJ

s<t zeS
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Strong stationary times

Indeed,

Plr<tXe=y|[Xo=x]=Y_ Y Pr=sX =y X =2z|X =x]

s<t zeS

=> > Plr=sX=z|X=x]Pzy
s<t zeS

=Y > (Plr=s|Xo=x]-7(2)) Pz,
s<t zeS
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Strong stationary times

Indeed,

Plr<tXe=y|[Xo=x]=Y_ Y Pr=sX =y X =2z|X =x]

s<t zeS

:ZZIP[TZS,XSZZ\XOZX]'PZJ

s<t zeS

:ZZ(]P’[T:S|XOZX]'W(Z))PZJ

s<t zeS

=Y Plr=s|Xo=x]-Y w(z)P.,

s<t zeS
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Strong stationary times

Indeed,

Plr<tXe=y|[Xo=x]=Y_ Y Pr=sX =y X =2z|X =x]

s<t zeS

:ZZIP[TZS,XSZZ\XOZX]'PZJ

s<t zeS

:ZZ(]P’[T:S|XOZX]'W(Z))PZJ

s<t zeS

=Y Plr=s|Xo=x]-Y w(z)P.,

s<t zeS

=Y Plr=s|Xo=x]7(y)

s<t
=Plr <t|Xo=x] 7(y).
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Bounding the mixing time using strong stationary times

@ Strong stationary times are also a useful tool for bounding the mixing time.
This is captured by the following:

@ Suppose that 7 is a strong stationary time for the starting state x. Then,
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Bounding the mixing time using strong stationary times

@ Strong stationary times are also a useful tool for bounding the mixing time.
This is captured by the following:

@ Suppose that 7 is a strong stationary time for the starting state x. Then,

TV(Xt|X0:x ) <Pt >t] X =x].
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Bounding the mixing time using strong stationary times

@ Strong stationary times are also a useful tool for bounding the mixing time.
This is captured by the following:

@ Suppose that 7 is a strong stationary time for the starting state x. Then,
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Bounding the mixing time using strong stationary times

@ Strong stationary times are also a useful tool for bounding the mixing time.
This is captured by the following:

@ Suppose that 7 is a strong stationary time for the starting state x. Then,

TV(X: | Xo =x,7) <P[r > t]| X =x].

@ Note that

VX [ Xo=x,m)= > [r(y)—PL,]

y(y)>Pt,
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Bounding the mixing time using strong stationary times

@ Hence, it will suffice to show that for all y € S,

t

1—7T(X}’/y)§IP[T>t|X0:x].
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Bounding the mixing time using strong stationary times

@ Hence, it will suffice to show that for all y € S,

t
1— 2L <Plr>t]X=x]
wly) <=

@ We have
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Bounding the mixing time using strong stationary times

@ Hence, it will suffice to show that for all y € S,

Pt
1— 2L <Plr>t]X=x]
wly) <=

@ We have

P PXe=y Xo=%]

m(y) m(y)
<17]P)[Xt:)/77—§t|X0:X]
- m(y)
1 TOPIr <t X =]
m(y)
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Bounding the mixing time using strong stationary times
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@ Hence, it will suffice to show that for all y € S, Stoponory hme
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Example: top-to-random shuffle
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@ Consider a deck of n cards.

@ At each step of the top-to-random shuffle, we take the top card, and place it
in any of the n available positions.
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Example: top-to-random shuffle

@ Consider a deck of n cards.

@ At each step of the top-to-random shuffle, we take the top card, and place it
in any of the n available positions.

@ On the homework, you showed that this is an aperiodic and irreducible chain
with the unique stationary distribution 7 given by the uniform distribution on
all possible permutations of the n cards.
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Example: top-to-random shuffle

@ Consider a deck of n cards.

@ At each step of the top-to-random shuffle, we take the top card, and place it
in any of the n available positions.

@ On the homework, you showed that this is an aperiodic and irreducible chain
with the unique stationary distribution 7 given by the uniform distribution on
all possible permutations of the n cards.

@ Now, we will bound the mixing time by constructing a suitable strong
stationary time.
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Example: top-to-random shuffle

@ Let Tyop be first time when the original bottom card has moved to the top.
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Example: top-to-random shuffle

@ Let Tyop be first time when the original bottom card has moved to the top.

@ Then, T = Tyop + 1 is a strong stationary time.
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Example: top-to-random shuffle

@ Let Tyop be first time when the original bottom card has moved to the top.
@ Then, T = Tyop + 1 is a strong stationary time.

o Clearly, this is a stopping time.
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Example: top-to-random shuffle

Let Trop be first time when the original bottom card has moved to the top.
Then, T = Tyop + 1 is a strong stationary time.

Clearly, this is a stopping time.

The key to showing that it is a strong stationary time is the following
observation, which can be proved by induction: let 74 denote the first time
when there are k cards under the original bottom card. Then, at X;,, all k!
permutations of these cards are equally likely. (Why?)
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Example: top-to-random shuffle
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@ Let Tyop be first time when the original bottom card has moved to the top.
@ Then, T = Tyop + 1 is a strong stationary time.

o Clearly, this is a stopping time.

@ The key to showing that it is a strong stationary time is the following
observation, which can be proved by induction: let 74 denote the first time
when there are k cards under the original bottom card. Then, at X;,, all k!
permutations of these cards are equally likely. (Why?)

@ Therefore, by the relationship between strong stationary times and total
variation distance,

TV(Xe | Xo = x,7) <Plr >t | X = x].
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Example: top-to-random shuffle T i
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@ Note that, when there are k cards under the bottom card, the probability
that the top card goes under it is (k + 1)/n.

@ Therefore, we see that
T ~ Geom(1/n) + Geom(2/n) + - - - + Geom(1),

where the geometric random variables on the right hand side are independent.
This is the same as the distribution of the coupon collector’s time.

@ Therefore, as for the lazy random walk on the hypercube, we get that

Tmix(€) < nlog n+ nlog(e™1). next hme!
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