
STATS 217: Introduction to Stochastic Processes I

Lecture 21
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Stationary times

Last time, we used the following description of the lazy random walk on the
hypercube: suppose the current state is x and the current time is t. We
choose a coordinate it+1 ∈ {1, . . . , n} uniformly at random and an unbiased
bit bt+1 ∈ {0, 1}, also uniformly at random, and independently of the
coordinate it+1. Then, we set the value of coordinate it+1 to bt+1 and keep
all other coordinates unchanged.

Let τrefresh be the first time that all coordinates have been chosen to be
updated.

Note that τrefresh is a stopping time with respect to the collection of random
tuples {(ik , bk)}k≥1. (Why?)

Moreover, note that Xτrefresh is distributed uniformly on {0, 1}n. (Why?)
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Strong stationary times

τrefresh is an example of a stationary time.

By this, we mean a stopping time τ (with respect to the initial state x of the
chain as well as any auxiliary randomness) which satisfies

P[Xτ = y | X0 = x ] = π(y) ∀y ∈ S ,

where π is the stationary distribution of the chain.

Let x ∈ S and consider the chain with initial state X0 = x . A stationary time
τ for which τ and Xτ are independent i.e. for all integers t and y ∈ S

P[τ = t,Xτ = y | X0 = x ] = P[τ = t | X0 = x ] · π(y)

is called a strong stationary time for the starting state x .

τrefresh is an example of a strong stationary time for any starting state x .
(Why?)
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Strong stationary times

A strong stationary time for the starting state x is a stopping time (with
respect to the chain and auxiliary randomness) satisfying

P[τ = t,Xτ = y | X0 = x ] = P[τ = t | X0 = x ] · π(y).

The property that will be useful to us is

P[τ ≤ t,Xt = y | X0 = x ] = P[τ ≤ t | X0 = x ] · π(y),

which can be proved using the law of total probability.
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Strong stationary times

Indeed,

P[τ ≤ t,Xt = y | X0 = x ] =
∑
s≤t

∑
z∈S

P[τ = s,Xt = y ,Xs = z | X0 = x ]

=
∑
s≤t

∑
z∈S

P[τ = s,Xs = z | X0 = x ] · Pz,y

=
∑
s≤t

∑
z∈S

(P[τ = s | X0 = x ] · π(z))Pz,y

=
∑
s≤t

P[τ = s | X0 = x ] ·
∑
z∈S

π(z)Pz,y

=
∑
s≤t

P[τ = s | X0 = x ] · π(y)

= P[τ ≤ t | X0 = x ] · π(y).
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Bounding the mixing time using strong stationary times

Strong stationary times are also a useful tool for bounding the mixing time.
This is captured by the following:

Suppose that τ is a strong stationary time for the starting state x . Then,

TV(Xt | X0 = x , π) ≤ P[τ > t | X0 = x ].

Note that

TV(Xt | X0 = x , π) =
∑

y :π(y)>Pt
x,y

[π(y)− P t
x,y ]

=
∑

y :π(y)>Pt
x,y

π(y)

(
1−

P t
x,y

π(y)

)

≤ max
y∈S

(
1−

P t
x,y

π(y)

)
.
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Bounding the mixing time using strong stationary times

Hence, it will suffice to show that for all y ∈ S ,

1−
P t
x,y

π(y)
≤ P[τ > t | X0 = x ].

We have

1−
P t
x,y

π(y)
= 1− P[Xt = y | X0 = x ]

π(y)

≤ 1− P[Xt = y , τ ≤ t | X0 = x ]

π(y)

= 1− π(y)P[τ ≤ t | X0 = x ]

π(y)

= P[τ > t | X0 = x ].
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Example: top-to-random shuffle

Consider a deck of n cards.

At each step of the top-to-random shuffle, we take the top card, and place it
in any of the n available positions.

On the homework, you showed that this is an aperiodic and irreducible chain
with the unique stationary distribution π given by the uniform distribution on
all possible permutations of the n cards.

Now, we will bound the mixing time by constructing a suitable strong
stationary time.
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Example: top-to-random shuffle

Let τtop be first time when the original bottom card has moved to the top.

Then, τ = τtop + 1 is a strong stationary time.

Clearly, this is a stopping time.

The key to showing that it is a strong stationary time is the following
observation, which can be proved by induction: let τk denote the first time
when there are k cards under the original bottom card. Then, at Xτk , all k!
permutations of these cards are equally likely. (Why?)

Therefore, by the relationship between strong stationary times and total
variation distance,

TV(Xt | X0 = x , π) ≤ P[τ > t | X0 = x ].

Lecture 21 STATS 217 9 / 10



Example: top-to-random shuffle

Let τtop be first time when the original bottom card has moved to the top.

Then, τ = τtop + 1 is a strong stationary time.

Clearly, this is a stopping time.

The key to showing that it is a strong stationary time is the following
observation, which can be proved by induction: let τk denote the first time
when there are k cards under the original bottom card. Then, at Xτk , all k!
permutations of these cards are equally likely. (Why?)

Therefore, by the relationship between strong stationary times and total
variation distance,

TV(Xt | X0 = x , π) ≤ P[τ > t | X0 = x ].

Lecture 21 STATS 217 9 / 10



Example: top-to-random shuffle

Let τtop be first time when the original bottom card has moved to the top.

Then, τ = τtop + 1 is a strong stationary time.

Clearly, this is a stopping time.

The key to showing that it is a strong stationary time is the following
observation, which can be proved by induction: let τk denote the first time
when there are k cards under the original bottom card. Then, at Xτk , all k!
permutations of these cards are equally likely. (Why?)

Therefore, by the relationship between strong stationary times and total
variation distance,

TV(Xt | X0 = x , π) ≤ P[τ > t | X0 = x ].

Lecture 21 STATS 217 9 / 10



Example: top-to-random shuffle

Let τtop be first time when the original bottom card has moved to the top.

Then, τ = τtop + 1 is a strong stationary time.

Clearly, this is a stopping time.

The key to showing that it is a strong stationary time is the following
observation, which can be proved by induction: let τk denote the first time
when there are k cards under the original bottom card. Then, at Xτk , all k!
permutations of these cards are equally likely. (Why?)

Therefore, by the relationship between strong stationary times and total
variation distance,

TV(Xt | X0 = x , π) ≤ P[τ > t | X0 = x ].

Lecture 21 STATS 217 9 / 10



Example: top-to-random shuffle

Let τtop be first time when the original bottom card has moved to the top.

Then, τ = τtop + 1 is a strong stationary time.

Clearly, this is a stopping time.

The key to showing that it is a strong stationary time is the following
observation, which can be proved by induction: let τk denote the first time
when there are k cards under the original bottom card. Then, at Xτk , all k!
permutations of these cards are equally likely. (Why?)

Therefore, by the relationship between strong stationary times and total
variation distance,

TV(Xt | X0 = x , π) ≤ P[τ > t | X0 = x ].

Lecture 21 STATS 217 9 / 10



Example: top-to-random shuffle

Note that, when there are k cards under the bottom card, the probability
that the top card goes under it is (k + 1)/n.

Therefore, we see that

τ ∼ Geom(1/n) + Geom(2/n) + · · ·+ Geom(1),

where the geometric random variables on the right hand side are independent.
This is the same as the distribution of the coupon collector’s time.

Therefore, as for the lazy random walk on the hypercube, we get that

τmix(ε) ≤ n log n + n log(ε−1).
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