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Last time

Consider an irreducible transition matrix P on a finite state space S with
unique stationary distribution π. A strong stationary time for the starting
state x is a stopping time (with respect to the chain and auxiliary
randomness) satisfying

P[τ = t,Xτ = y | X0 = x ] = P[τ = t | X0 = x ] · π(y).

Suppose that τ is a strong stationary time for the starting state x . Then,

TV(Xt | X0 = x , π) ≤ P[τ > t | X0 = x ].
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Riffle shuffles

Recall riffle shuffles from Problem 8 on Homework 6. For a deck of size n:

Split the deck into two parts according to Binomial(n, 1/2).

Hold one part in your left hand and the other part in your right hand with the
bottom of each deck facing the table.

Merge the two parts by dropping cards in sequence, where if you have L cards
in your left hand and R cards in your right hand at some point, then the
probability that the next card comes from your left hand is L/(L + R).

On the homework, you showed that this is an irreducible and aperiodic chain and
that the unique stationary distribution is the uniform distribution on all
permutations of the cards.
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Riffle shuffles

If you attempted this problem, you probably also came up with the following
equivalent description:

Split the deck into two parts according to Binom(n, 1/2).

Suppose that there are M ‘top’ cards and n −M ‘bottom’ cards. Note that
there are

(
n
M

)
possible ways to interleave these cards so that the relative

order of the top cards is preserved and the relative order of the bottom cards
is also preserved.

Choose one of these
(
n
M

)
ways to interleave/riffle uniformly at random.
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Equivalence of descriptions

Consider the case when the binomial random variable in both methods is M.

We know that for the second method, the probability of getting to any riffle
is exactly 1/

(
n
M

)
.

What about for the first method? Once you know M, then for any valid final
outcome, there is exactly one sequence of left and right drops that result in
that sequence.

Consider a sequence of left and right drops. Let I denote the indices
corresponding to a left drop and let J denote the indices corresponding to a
right drop. Then, the probability of this sequence is∏

i∈I

Li
Li + Ri

∏
j∈J

Rj

Lj + Rj
=

M(M − 1) . . . , 1× (n −M)(n −M − 1) . . . 1

n(n − 1) . . . 1

=

(
n

M

)−1
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Reverse riffle shuffle

For constructing a strong stationary time, it will be more convenient to work with
the inverse riffle shuffle. For a deck of size n:

Label the cards with independent and uniform bits b1, . . . , bn ∈ {0, 1}.

Move all the cards labelled 0 above all the cards labelled 1 while preserving
the relative order within the 0 cards and the 1 cards.

This shuffle is the reverse of the riffle shuffle in a precise sense discussed in
Problem 4 of Homework 8.

Here’s the idea: the number of cards labelled with 0 has distribution
Binom(n, 1/2). Moreover, conditioned on the value M of this binomial random
variable, the location of the M cards labelled 0 is uniform among the

(
n
M

)
possibilities.
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Reverse riffle shuffle

Note that the reverse riffle shuffle is irreducible and aperiodic.

By the general results of Problem 4 on Homework 8, the uniform distribution
on permutations is the unique stationary distribution of the reverse ruffle
shuffle, and moreover, the ε-mixing time of the reverse riffle shuffle is the
same as that of the riffle shuffle.

Therefore, it suffices to bound the ε-mixing time of the reverse riffle shuffle.

We will do this by constructing a suitable strong stationary time for the
reverse riffle shuffle.
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Strong stationary time for the reverse riffle shuffle

As a first step towards this, consider what happens after two steps of the
reverse riffle shuffle.

Now, every card i is labelled with a binary string of length 2, denoted by
b2i b

1
i , where b2i is the bit assigned to it in the second round and b1i is the bit

assigned to it in the first round.

Note that all cards with the string 00 are above all cards with the string 01,
which are above all cards with the string 10, which are above all cards with
the string 11.

Within each category (00, 01, 10, 11), the original relative order is preserved.
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Strong stationary time for the reverse riffle shuffle

This suggests the following candidate for a strong stationary time: let τ be
the first time when no two cards have the same binary string (of length τ)
assigned to them.

Clearly, τ is a stopping time.

To check that τ is a strong stationary time, note that given τ = t, we know
that each card has a different t-bit string (and that removing the most recent
bit leads to at least 2 cards having the same (t − 1)-bit string). Since the
t-bit strings are generated using i.i.d. bits, each resulting permutation must
be equally likely by symmetry.
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Mixing time of the reverse riffle shuffle

It remains to estimate P[τ > t], or equivalently, P[τ ≤ t].

If τ ≤ t, then different labels are assigned to all n cards after t rounds. Since
each card i is equally likely to get any of the 2t possible labels, the
probability that this happens is

P[τ ≤ t] = 1× (1− 1/2t)× (1− 2/2t)× . . . (1− (n − 1)/2t).

For 2t = n2/c2 for c > 0 (i.e. t = 2 log2(n/c)), this simplifies to

P[τ ≤ t] = e−c
2/2(1 + O(1/n)).

For τmix(1/4), we want P[τ > t] ≤ 1/4, and hence, we want the right hand
side to be 3/4.

c = 0.75 works, and this shows that

τmix(1/4) ≤ 2 log2(4n/3).
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Mixing time of the reverse riffle shuffle

Our analysis is suboptimal: the well-known paper of Bayer and Diaconis
(Trailing the dovetail shuffle to its lair) shows that the mixing time is
1.5 log2 n + o(log2 n).

Here is a numerical computation (to 4 digits of precision) of the total
variation distance after t riffle shuffles from the paper of Bayer and Diacnois:

t = 1; 1.0000 t = 2; 1.0000 t = 3; 1.0000 t = 4; 1.0000

t = 5; 0.9237 t = 6; 0.6135 t = 7; 0.3341 t = 8; 0.1672

t = 9; 0.0854 t = 10; 0.0429 t = 11; 0.0215 t = 12; 0.0108
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