STATS 217: Introduction to Stochastic Processes I

Lecture 23

Continuous time Markov chains

- This week, we will study continuous time Markov chains.
- As before, we will assume that the state space is discrete.
- We will also assume that the Markov chains under consideration are time-homogeneous i.e. that the transition rates do not depend on the time.

Continuous time Markov chains

We say that $(X_t)_{t \ge 0, t \in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$\mathbb{P}[X_{t+s} = j \mid X_s = i, X_{s_{n-1}} = i_{n-1}, \dots, X_{s_0} = i_0] = \mathbb{P}[X_{t+s} = j \mid X_s = i]$$

= $\mathbb{P}[X_t = j \mid X_0 = i]$
=: p_{ij}^t .

- for all integers $n \ge 0$,
- for all $0 \le s_0 < s_1 < \ldots s_{n-1} < s$,
- for all $0 \leq t$, and
- for all $j, i, i_0, \ldots, i_{n-1} \in \Omega$.

As before, we will let P^t denote the $|\Omega| \times |\Omega|$ matrix with $P^t(i,j) = p_{ij}^t$.

Example

- Let N(t) denote a PPP with rate λ .
- Then, N(t) is a CTMC on the state space \mathbb{Z} with transition probabilities

$$\mathbb{P}[X_t = j \mid X_0 = i] = \mathbb{P}[\mathsf{Pois}(\lambda t) = (j - i)].$$

- For a very general example, suppose that Y_n is a DTMC with state space Ω and with transition probabilities U_{ij}
- Then, $X_t = Y_{N(t)}$ is a CTMC on the state space Ω with transition probabilities

$$\begin{split} \mathbb{P}[X_t = j \mid X_0 = i] &= \sum_{\ell \ge 0} \mathbb{P}[X_t = j \mid X_0 = i, N(t) - N(0) = \ell] \cdot \mathbb{P}[N(t) - N(0) = \ell] \\ &= \sum_{\ell \ge 0} (U^{\ell})_{ij} \cdot e^{-\lambda t} \frac{(\lambda t)^{\ell}}{\ell!}. \end{split}$$

Heat kernel

 Given the transition matrix U on Ω, the heat kernel H_t is defined on Ω × Ω by

$$H_t(i,j) = \sum_{\ell \ge 0} (U^\ell)_{ij} \cdot e^{-\lambda t} \frac{(\lambda t)^\ell}{\ell!}.$$

- The previous slide shows that H_t is the time t transition matrix of the CTMC $X_t = Y_{N(t)}$, where Y is a DTMC with transition matrix U and N(t) is a PPP with rate λ .
- A more compact way to write H_t is as

$$H_t = e^{\lambda t (U-I)} = e^{tQ},$$

where Q denotes the $\Omega \times \Omega$ matrix $Q = \lambda(U - I)$.

Jump rates

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.
- Accordingly, we define the jump rates by

$$q_{ij} := \lim_{h \to 0} \frac{p_{ij}^h}{h} \quad \forall i \neq j.$$

• We will set

$$q_{ii} = -\sum_{j\neq i} q_{ij} =: -\lambda_i.$$

• In particular, for any $i \in \Omega$,

$$r_{ij} := rac{q_{ij}}{\lambda_i} \quad j \neq i$$

is a probability distribution on $\Omega \setminus \{i\}$.

Example

- For a PPP with rate λ , the only non-zero jump rates are $q_{i,i+1} = \lambda$ for all $i \ge 0$ and $q_{ii} = -\lambda$ for all $i \ge 0$.
- For $X_t = Y_{N(t)}$ as before, where Y_n is a DTMC on the state space Ω with transition probabilities U_{ij} , the jump rates are (for $i \neq j$)

$$q_{ij} = \lim_{h \to 0} \frac{p_{ij}^h}{h}$$
$$= \lim_{h \to 0} \frac{(e^{hQ})_{ij}}{h}$$
$$= Q_{i,j}$$
$$= \lambda \cdot (U - I)_{i,j}$$
$$= \lambda \cdot U_{ij}.$$

- Typically, it is easier to describe a CTMC using jump rates and then compute the transition probabilities from the jump rates.
- As an example, consider a continuous-time branching process where each individual independently dies at rate μ and gives birth to a new individual at rate λ .
- This corresponds to a CTMC with the jump rates

$$q(n, n+1) = \lambda n$$

$$q(n, n-1) = \mu n.$$

• We will now discuss how to construct a CTMC from the jump rates.

How can we construct/simulate (say on a computer) a CTMC with given jump rates q_{ij} ?

• Recall that for a DTMC (Y_n) on the state space Ω with transition probabilites U_{ij} and for N(t) a PPP with rate λ , the jump rates of $X_t = Y_{N(t)}$ are

$$q_{ij} = U_{ij}\lambda, \quad i \neq j.$$

• We will basically reverse this process.

Constructing a CTMC from jump rates

- First, suppose that $\Lambda := \sup_i \lambda_i < \infty$, where recall that $\lambda_i = \sum_{i \neq i} q_{ij}$.
- Let N(t) be a PPP with rate Λ .
- Let (Y_n) be a DTMC on the state space Ω with transition probabilities U_{ij} where

$$U_{ij} = q_{ij}/\Lambda \quad i \neq j$$

 $U_{ii} = 1 - \lambda_i/\Lambda.$

• Then, $X_t = Y_{N(t)}$ is a CTMC with jump rate from *i* to *j* for $i \neq j$ given by

$$\Lambda U_{ij} = q_{ij}$$

as desired.

- What if Λ = ∞? For instance, this is the case for the branching process example we discussed earlier.
- Given jump rates q_{ij}, let

$$U_{ij} := r_{ij} = \frac{q_{ij}}{\lambda_i} \quad i \neq j.$$

• Recall that r_{ij} and hence U_{ij} is a probability distribution on $\Omega \setminus \{i\}$.

Constructing a CTMC from jump rates

• Let Y_0, Y_1, \ldots denote a DTMC with

$$\mathbb{P}[Y_{n+1} = j \mid Y_n = i] = U_{ij} \quad i \neq j$$

$$\mathbb{P}[Y_{n+1} = i \mid Y_n = i] = 0.$$

• Given $Y_0 = i_0, Y_1 = i_1, Y_2 = i_2, ...$, generate independent random variables $t_1, t_2, ...$ with

 $t_i \sim \mathsf{Exp}(\lambda_{i-1}).$

• Let $T_0 := 0$ and

$$T_n:=t_1+\cdots+t_n.$$

• Finally, let

$$X(t) = Y_n \quad \forall T_n \leq t < T_{n+1}.$$

Constructing a CTMC from jump rates

- Why does this work?
- For any $i \neq j$, we have

$$\lim_{h \to 0} \frac{p_{ij}^{h}}{h} = \lim_{h \to 0} \frac{1}{h} \mathbb{P}[\mathsf{Exp}(\lambda_{i}) \leq h] \cdot \mathbb{P}[Y_{1} = j \mid Y_{0} = i]$$
$$= \lim_{h \to 0} \frac{1 - e^{-\lambda_{i}h}}{h} \cdot \mathbb{P}[Y_{1} = j \mid Y_{0} = i]$$
$$= \lambda_{i} \cdot U_{ij}$$
$$= \lambda_{i} \cdot \frac{q_{ij}}{\lambda_{i}}$$
$$= q_{ij},$$

as desired.