STATS 217: Introduction to Stochastic Processes I

Lecture 23

Continuous time Markov chains

- This week, we will study continuous time Markov chains.
- As before, we will assume that the state space is discrete.
- We will also assume that the Markov chains under consideration are time-homogeneous i.e. that the transition rates do not depend on the time.

Continuous time Markov chains

Recall: stochashic pucess $\left(X_{t}\right)_{t \in \tau}$
We say that $\left(X_{t}\right)_{t \geq 0, t \in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$
\mathbb{P}[X_{t+s}=j \mid \underbrace{X_{s}=i} \underbrace{X_{s_{n-1}}=i_{n-1}}, \ldots, X_{s_{0}}=i_{0}]=\mathbb{P}\left[X_{t+s}=j \mid X_{s}=i\right]
$$

Continuous time Markov chains

We say that $\left(X_{t}\right)_{t \geq 0, t \in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$
\begin{aligned}
& \mathbb{P}\left[X_{t+s}=j \mid X_{s}=i, X_{s_{n-1}}=i_{n-1}, \ldots, X_{s_{0}}=i_{0}\right]=\mathbb{P}\left[X_{t+s}=j \mid X_{s}=i\right] \\
&=\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right] \\
&=: p_{i j}^{t} .\left(p^{t}\right)_{i j} \\
& \text { time homogne }
\end{aligned} \quad \begin{aligned}
& \text { hity }
\end{aligned}
$$

Continuous time Markov chains

We say that $\left(X_{t}\right)_{t \geq 0, t \in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$
\begin{aligned}
\mathbb{P}\left[X_{t+s}=j \mid X_{s}=i, X_{s_{n-1}}=i_{n-1}, \ldots, X_{s_{0}}=i_{0}\right] & =\mathbb{P}\left[X_{t+s}=j \mid X_{s}=i\right] \\
& =\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right] \\
& =: p_{i j}^{t} .
\end{aligned}
$$

- for all integers $n \geq 0$,
- for all $0 \leq s_{0}<s_{1}<\ldots s_{n-1}<s$,
- for all $0 \leq t$, and
- for all $j, i, i_{0}, \ldots, i_{n-1} \in \Omega$.

Continuous time Markov chains

We say that $\left(X_{t}\right)_{t \geq 0, t \in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$
\begin{aligned}
\mathbb{P}\left[X_{t+s}=j \mid X_{s}=i, X_{s_{n-1}}=i_{n-1}, \ldots, X_{s_{0}}=i_{0}\right] & =\mathbb{P}\left[X_{t+s}=j \mid X_{s}=i\right] \\
& =\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right] \\
& =: p_{i j}^{t}
\end{aligned}
$$

- for all integers $n \geq 0$,
- for all $0 \leq s_{0}<s_{1}<\ldots s_{n-1}<s$,
- for all $0 \leq t$, and
- for all $j, i, i_{0}, \ldots, i_{n-1} \in \Omega$.

As before, we will let P^{t} denote the $|\Omega| \times|\Omega|$ matrix with $P^{t}(i, j)=p_{i j}^{t}$.

- Let $N(t)$ denote a PPP with rate λ.
- Then, $N(t)$ is a CTMC on the state space \mathbb{Z} with transition probabilities

$$
\begin{aligned}
\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right] & =\mathbb{P}[\operatorname{Pois}(\lambda t)=(j-i)] \\
& =e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}
\end{aligned}
$$

Example

- Let $N(t)$ denote a PPP with rate λ.
- Then, $N(t)$ is a CTMC on the state space \mathbb{Z} with transition probabilities

$$
\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right]=\mathbb{P}[\operatorname{Pois}(\lambda t)=(j-i)] .
$$

"continuisation of a DTMC"

- For a very general example, suppose that Y_{n} is a DTMC with state space Ω and with transition probabilities $U_{i j}$
- Then, $X_{t}=Y_{N(t)}$ is a CTMC on the state space Ω

$$
Y_{0}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, \ldots
$$

Example

- Let $N(t)$ denote a PPP with rate λ.
- Then, $N(t)$ is a CTMC on the state space \mathbb{Z} with transition probabilities

$$
\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right]=\mathbb{P}[\operatorname{Pois}(\lambda t)=(j-i)] .
$$

- For a very general example, suppose that Y_{n} is a DTMC with state space Ω and with transition probabilities $U_{i j}$
- Then, $X_{t}=Y_{N(t)}$ is a CTMC on the state space Ω with transition probabilities

$$
\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right]=\sum_{\ell \geq 0} \mathbb{P}\left[X_{t}=j \mid X_{0}=i, N(t)-N(0)=\ell\right] \cdot \mathbb{P}[N(t)-N(0)=\ell]
$$

$X_{1}=i \quad X_{t}=j \quad$ e.g. exactly two transitions have happened $0 \quad t \Leftrightarrow$ exactly two PI in $[0, t]$

Example

- Let $N(t)$ denote a PPP with rate λ.
- Then, $N(t)$ is a CTMC on the state space \mathbb{Z} with transition probabilities

$$
\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right]=\mathbb{P}[\operatorname{Pois}(\lambda t)=(j-i)] .
$$

- For a very general example, suppose that Y_{n} is a DTMC with state space Ω and with transition probabilities $U_{i j}$
- Then, $X_{t}=Y_{N(t)}$ is a CTMC on the state space Ω with transition probabilities

$$
\begin{aligned}
\mathbb{P}\left[X_{t}=j \mid X_{0}=i\right] & =\sum_{\ell \geq 0} \mathbb{P}\left[X_{t}=j \mid X_{0}=i, N(t)-N(0)=\ell\right] \cdot \mathbb{P}[N(t)-N(0)=\ell] \\
& =\sum_{\ell \geq 0}\left(U^{\ell}\right)_{i j}\left\{e^{-\lambda t} \frac{(\lambda t)^{\ell}}{\ell!}\right\}
\end{aligned}
$$

- Given the transition matrix U on Ω, the heat kernel H_{t} is defined on $\Omega \times \Omega$ by

$$
H_{t}(i, j)=\sum_{\ell \geq 0}\left(U^{\ell}\right)_{i j} \cdot e^{-\lambda t} \frac{(\lambda t)^{\ell}}{\ell!}
$$

$$
\mathbb{P}\left[x_{t}=j \mid x_{0}=i\right]
$$

Y has transition

$$
X_{t}=Y_{N(t)}
$$ manx V.

Heat kernel

- Given the transition matrix U on Ω, the heat kernel H_{t} is defined on $\Omega \times \Omega$ by

$$
H_{t}(i, j)=\sum_{\ell \geq 0}\left(U^{\ell}\right)_{i j} \cdot e^{-\lambda t} \frac{(\lambda t)^{\ell}}{\ell!} .
$$

- The previous slide shows that H_{t} is the time t transition matrix of the CTMC $X_{t}=Y_{N(t)}$, where Y is a DTMC with transition matrix U and $N(t)$ is a PPP with rate λ.

Heat kernel

- Given the transition matrix U on Ω, the heat kernel H_{t} is defined on $\Omega \times \Omega$ by

$$
\left.H_{t}(i, j)=\sum_{\ell \geq 0}^{\left(U^{\ell}\right)_{i j}} \cdot e^{-\lambda t} \frac{\lambda t)^{\ell}}{(\ell!} .\right]
$$

- The previous slide shows that H_{t} is the time t transition matrix of the CTMC $X_{t}=Y_{N(t)}$, where Y is a DTMC with transition matrix U and $N(t)$ is a PPP with rate λ.
- A more compact way to write H_{t} is as

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

$$
H_{t}=e^{\lambda t(U-I)}=\underline{e}^{\swarrow t Q}
$$

where Q denotes the $\Omega \times \Omega$ matrix $Q=\lambda(\underline{U}-I)$.

$$
e^{t \lambda(Q-I)}=
$$

Jump rates

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
is there something like this for CTMC?
for DTMC:

$$
\underline{P}_{i j}=\mathbb{P}\left[x_{1}=j \mid x_{0}=i\right]
$$

Jump rates

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.

Jump rates

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.
- Accordingly, we define the jump rates by

$$
\begin{aligned}
& \text { Recall: } \\
& p_{i j}^{h}=\mathbb{R}\left[X_{h}=j \mid X_{0}=i\right] \quad q_{i j}:=\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} \underset{\sim i \neq j}{\sim} .
\end{aligned}
$$

Jump rates

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.
- Accordingly, we define the jump rates by

$$
\overline{q_{i j}}:=\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} \quad \forall i \neq j .
$$

- We will set

$$
\widetilde{q}_{i i}=-\sum_{j \neq i} q_{i j}=:-\lambda_{i} . \quad \sum_{j} q_{i j}=0
$$

because of this

Jump rates

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.
- Accordingly, we define the jump rates by

$$
\left(q_{i j}\right)=\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} \quad \forall i \neq j .
$$

$$
\lambda_{i}=\sum_{j \neq i}^{1} 9_{i j}
$$

$$
q_{i i}=-\sum_{j \neq i} q_{i j}=:-\lambda_{i} .
$$

- In particular, for any $i \in \Omega$,

$$
r_{i j}:=\frac{q_{i j}}{\lambda_{i}} j \neq i
$$

is a probability distribution on $\overline{\Omega \backslash\{i\}}$.|

Example

$$
q_{i j}=\lim _{h \rightarrow 0} \frac{\left(p^{h}\right)_{i j}}{h}
$$

- For a PPP with rate λ, the only non-zero jump rates are $q_{i, i+1}=\lambda$ for all $i \geq 0$ and $q_{i i}=-\lambda$ for all $i \geq 0$.

$$
\begin{aligned}
\left(p^{h}\right)_{j} & =\mathbb{P}\left[x_{n}=j \mid x_{0}=i\right] \\
& =\mathbb{I}[\operatorname{poi}(h)=(j-i)] \\
j=i+1 & =\underbrace{e^{-\lambda h}}_{l} \frac{(\lambda h)^{1}}{1!} \bar{k}
\end{aligned}
$$

Example

- For a PPP with rate λ, the only non-zero jump rates are $q_{i, i+1}=\lambda$ for all $i \geq 0$ and $q_{i i}=-\lambda$ for all $i \geq 0$.
- For $X_{t}=Y_{N(t)}$ as before, where Y_{n} is a DTMC on the state space Ω with transition probabilities $U_{i j}$, the jump rates are (for $i \neq j$)

$$
\begin{aligned}
\left(p^{h}\right)_{i j}=\left(e^{h Q}\right)_{i j} & q_{i j} & =\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} \\
Q=\lambda(-v-I) & & =\lim _{h \rightarrow 0} \frac{\left(e^{h Q}\right)_{i j}}{h}
\end{aligned}
$$

Example

- For a PPP with rate λ, the only non-zero jump rates are $q_{i, i+1}=\lambda$ for all $i \geq 0$ and $q_{i i}=-\lambda$ for all $i \geq 0$.
- For $X_{t}=Y_{N(t)}$ as before, where Y_{n} is a DTMC on the state space Ω with transition probabilities $U_{i j}$, the jump rates are (for $i \neq j$)

$$
\begin{aligned}
q_{i j} & =\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(e^{h Q}\right)_{i j}}{h} \\
& =Q_{i, j} \\
& =\lambda\left(U_{i j}-I_{i j}\right) \\
& =\tilde{\sim}_{i \cdot U_{i}} \text { since } i \neq j .
\end{aligned}
$$

Example

- For a PPP with rate λ, the only non-zero jump rates are $q_{i, i+1}=\lambda$ for all $i \geq 0$ and $q_{i i}=-\lambda$ for all $i \geq 0$.
- For $X_{t}=Y_{N(t)}$ as before, where Y_{n} is a DTMC on the state space Ω with transition probabilities $U_{i j}$, the jump rates are (for $i \neq j$)

$$
\begin{aligned}
q_{i j} & =\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(e^{h Q}\right)_{i j}}{h} \\
& =Q_{i, j} \\
& =\lambda \cdot(U-I)_{i, j} \\
& =\lambda \cdot U_{i j} .
\end{aligned}
$$

Example

- Typically, it is easier to describe a CTMC using jump rates and then compute the transition probabilities from the jump rates.
- intermediate q : if you have the jump rates, how do you simulate the process

Example

- Typically, it is easier to describe a CTMC using jump rates and then compute the transition probabilities from the jump rates.
- As an example, consider a continuous-time branching process where each individual independently dies at rate μ and gives birth to a new individual at rate λ.
- This corresponds to a CTMC with the jump rates

$$
q(n, n+1)=\lambda n \quad\left\{\begin{array}{l}
\text { Convenient + intritive } \\
q(n, n-1)=\mu n .
\end{array}\right. \text { Representation }
$$

Example

- Typically, it is easier to describe a CTMC using jump rates and then compute the transition probabilities from the jump rates.
- As an example, consider a continuous-time branching process where each individual independently dies at rate μ and gives birth to a new individual at rate λ.
- This corresponds to a CTMC with the jump rates

$$
\begin{gathered}
q(n, n+1)=\lambda n \\
q(n, n-1)=\mu n .
\end{gathered}
$$

- We will now discuss how to construct a CTMC from the jump rates.

Constructing a CTMC from jump rates

How can we construct/simulate (say on a computer) a CTMC with given jump rates $q_{i j}$?

Constructing a CTMC from jump rates

How can we construct/simulate (say on a computer) a CTMC with given jump rates $q_{i j}$?

- Recall that for a DTMC $\left(Y_{n}\right)$ on the state space Ω with transition probabilites $U_{i j}$ and for $N(t)$ a PPP with rate λ, the jump rates of $X_{t}=Y_{N(t)}$ are

$$
\begin{aligned}
\rightarrow & q_{i j}=U_{i j} \lambda, \quad i \neq j . \\
q_{1 i} & =-\sum_{j \neq i} q_{i j}
\end{aligned}
$$

Constructing a CTMC from jump rates

How can we construct/simulate (say on a computer) a CTMC with given jump rates $q_{i j}$?

- Recall that for a DTMC $\left(Y_{n}\right)$ on the state space Ω with transition probabilites $U_{i j}$ and for $N(t)$ a PPP with rate λ, the jump rates of $X_{t}=Y_{N(t)}$ are

$$
q_{i j}=U_{i j} \lambda, \quad i \neq j .
$$

- We will basically reverse this process. we have $q_{i j}$

$$
\begin{aligned}
& \text { we have } q_{i j} \\
& \text { we will by to } \\
& \text { find } v_{i j} a \lambda \\
& \text { s.t. } U_{i j} \text { is valid } \\
& \text { wansinion manx } A \\
& q_{i j .}=v_{i j} \lambda
\end{aligned}
$$

Constructing a CTMC from jump rates

- First, suppose that $\Lambda:=\sup _{i} \lambda_{i}<\infty$, where recall that $\lambda_{i}=\sum_{j \neq i} q_{i j}$.
egg.

$$
\left.\begin{array}{l}
q(n, n+1)=\lambda n \\
q(n, n-1)=\mu n
\end{array}\right\}
$$

does not satisfy $n<\infty$

Constructing a CTMC from jump rates

- First, suppose that $\Lambda:=\sup _{i} \lambda_{i}<\infty$, where recall that $\lambda_{i}=\sum_{j \neq i} q_{i j}$.
- Let $N(t)$ be a PPP with rate Λ.

Constructing a CTMC from jump rates

- First, suppose that $\Lambda:=\sup _{i} \lambda_{i}<\infty$, where recall that $\lambda_{i}=\sum_{j \neq i} q_{i j}$.
- Let $N(t)$ be a PPP with rate Λ.
- Let $\left(Y_{n}\right)$ be a DTMC on the state space Ω with transition probabilities $U_{i j}$ where

$$
\begin{array}{ll}
q_{i j} & U_{i j}
\end{array}=\frac{q_{i j}}{\Lambda} \quad j \neq i
$$

Constructing a CTMC from jump rates

- First, suppose that $\Lambda:=\sup _{i} \lambda_{i}<\infty$, where recall that $\lambda_{i}=\sum_{j \neq i} q_{i j}$.
- Let $N(t)$ be a PPP with rate Λ.
- Let $\left(Y_{n}\right)$ be a DTMC on the state space Ω with transition probabilities $U_{i j}$ where

$$
\sum_{j \neq i}^{\prime} v_{i j}=\frac{\lambda_{i}}{\Gamma} \rightarrow \begin{aligned}
& U_{i j}=q_{i j} / \Lambda \quad i \neq j \\
& U_{i i}=1-\lambda_{i} / \Lambda .
\end{aligned}
$$

Constructing a CTMC from jump rates

- First, suppose that $\Lambda:=\sup _{i} \lambda_{i}<\infty$, where recall that $\lambda_{i}=\sum_{j \neq i} q_{i j}$.
- Let $N(t)$ be a PPP with rate Λ.
- Let $\left(Y_{n}\right)$ be a DTMC on the state space Ω with transition probabilities $U_{i j}$ where

$$
\begin{aligned}
& U_{i j}=q_{i j} / \Lambda \quad i \neq j \\
& U_{i i}=1-\lambda_{i} / \Lambda .
\end{aligned}
$$

- Then, $X_{t}=Y_{N(t)}$ is a CTMC with jump rate from i to j for $i \neq j$ given by

$$
\Lambda U_{i j}=q_{i j},
$$

as desired.

Constructing a CTMC from jump rates

- What if $\Lambda=\infty$? For instance, this is the case for the branching process example we discussed earlier.

Constructing a CTMC from jump rates

- What if $\Lambda=\infty$? For instance, this is the case for the branching process example we discussed earlier.
- Given jump rates $q_{i j}$, let

$$
\lambda_{i}=\sum_{j \neq i}^{\prime} q_{i j}
$$

$$
U_{i j}:=r_{i j}=\frac{q_{i j}}{\lambda_{i}} \quad i \neq j .
$$

Constructing a CTMC from jump rates

- What if $\Lambda=\infty$? For instance, this is the case for the branching process example we discussed earlier.
- Given jump rates $q_{i j}$, let

$$
U_{i j}:=r_{i j}=\frac{q_{i j}}{\lambda_{i}} \quad i \neq j
$$

- Recall that $r_{i j}$ and hence $U_{i j}$ is a probability distribution on $\Omega \backslash\{i\}$.

Constructing a CTMC from jump rates

- Let Y_{0}, Y_{1}, \ldots denote a DTMC with

$$
\begin{aligned}
& \mathbb{P}\left[Y_{n+1}=j \mid Y_{n}=i\right]=U_{i j} \quad i \neq j \\
& \mathbb{P}\left[Y_{n+1}=i \mid Y_{n}=i\right]=0 .
\end{aligned}
$$

Constructing a CTMC from jump rates

- Let Y_{0}, Y_{1}, \ldots denote a DTMC with

$$
\begin{aligned}
& \mathbb{P}\left[Y_{n+1}=j \mid Y_{n}=i\right]=U_{i j} \quad i \neq j \\
& \mathbb{P}\left[Y_{n+1}=i \mid Y_{n}=i\right]=0 .
\end{aligned}
$$

- Given $Y_{0}=i_{0}, Y_{1}=i_{1}, Y_{2}=i_{2}, \ldots$, generate independent random variables t_{1}, t_{2}, \ldots with

$$
t_{i} \sim \operatorname{Exp}\left(\lambda_{i-1}\right) .
$$

Constructing a CTMC from jump rates

- Let Y_{0}, Y_{1}, \ldots denote a DTMC with

$$
\begin{aligned}
& \mathbb{P}\left[Y_{n+1}=j \mid Y_{n}=i\right]=U_{i j} \quad i \neq j \\
& \mathbb{P}\left[Y_{n+1}=i \mid Y_{n}=i\right]=0 .
\end{aligned}
$$

- Given $Y_{0}=i_{0}, Y_{1}=i_{1}, Y_{2}=i_{2}, \ldots$, generate independent random variables t_{1}, t_{2}, \ldots with

$$
t_{i} \sim \operatorname{Exp}\left(\lambda_{i-1}\right) .
$$

- Let $T_{0}:=0$ and

$$
T_{n}:=t_{1}+\cdots+t_{n} .
$$

Constructing a CTMC from jump rates

- Let Y_{0}, Y_{1}, \ldots denote a DTMC with

$$
\begin{aligned}
& \mathbb{P}\left[Y_{n+1}=j \mid Y_{n}=i\right]=U_{i j} \quad i \neq j \\
& \mathbb{P}\left[Y_{n+1}=i \mid Y_{n}=i\right]=0 .
\end{aligned}
$$

- Given $Y_{0}=i_{0}, Y_{1}=i_{1}, Y_{2}=i_{2}, \ldots$, generate independent random variables t_{1}, t_{2}, \ldots with

$$
t_{i} \sim \operatorname{Exp}\left(\lambda_{i-1}\right) .
$$

- Let $T_{0}:=0$ and
- Finally, let

$$
T_{n}:=t_{1}+\cdots+t_{n} \overbrace{0}^{Y_{0}^{n}} \overbrace{t_{1}}^{Y_{1}} \underbrace{Y_{2}}_{t_{1}+t_{2}} \overbrace{t_{1}+t_{2}+t_{1}}^{Y_{3}} \ldots
$$

$$
X(t)=Y_{n} \quad \forall T_{n} \leq t<T_{n+1} .
$$

Constructing a CTMC from jump rates

- Why does this work?

Constructing a CTMC from jump rates

- Why does this work? - \quad wts
- For any $i \neq j$, we have

$$
q_{i j}^{i \neq j}=\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h}
$$

$$
\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \mathbb{P}[\underbrace{\operatorname{Exp}\left(\lambda_{i}\right)} \leq h] \cdot \underbrace{\mathbb{P}\left[Y_{1}=j \mid Y_{0}=i\right]}
$$

Constructing a CTMC from jump rates

- Why does this work?
- For any $i \neq j$, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} & =\lim _{h \rightarrow 0} \frac{1}{h} \mathbb{P}\left[\operatorname{Exp}\left(\lambda_{i}\right) \leq h\right] \cdot \mathbb{P}\left[Y_{1}=j \mid Y_{0}=i\right] \\
& =\lim _{h \rightarrow 0} \frac{1-e^{-\lambda_{i} h}}{h} \cdot \mathbb{P}\left[Y_{1}=j \mid Y_{0}=i\right] \\
& \approx \frac{\lambda_{i} K}{\not K} \quad U_{i j}^{\prime \prime} \\
& =\lambda_{i} U_{i j}=\lambda / \frac{q_{i j}}{\lambda l}
\end{aligned}
$$

Constructing a CTMC from jump rates

- Why does this work?
- For any $i \neq j$, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} & =\lim _{h \rightarrow 0} \frac{1}{h} \mathbb{P}\left[\operatorname{Exp}\left(\lambda_{i}\right) \leq h\right] \cdot \mathbb{P}\left[Y_{1}=j \mid Y_{0}=i\right] \\
& =\lim _{h \rightarrow 0} \frac{1-e^{-\lambda_{i} h}}{h} \cdot \mathbb{P}\left[Y_{1}=j \mid Y_{0}=i\right] \\
& =\lambda_{i} \cdot U_{i j}
\end{aligned}
$$

Constructing a CTMC from jump rates

- Why does this work?
- For any $i \neq j$, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} & =\lim _{h \rightarrow 0} \frac{1}{h} \mathbb{P}\left[\operatorname{Exp}\left(\lambda_{i}\right) \leq h\right] \cdot \mathbb{P}\left[Y_{1}=j \mid Y_{0}=i\right] \\
& =\lim _{h \rightarrow 0} \frac{1-e^{-\lambda_{i} h}}{h} \cdot \mathbb{P}\left[Y_{1}=j \mid Y_{0}=i\right] \\
& =\lambda_{i} \cdot U_{i j} \\
& =\lambda_{i} \cdot \frac{q_{i j}}{\lambda_{i}} \\
& =q_{i j}
\end{aligned}
$$

as desired.

