
STATS 217: Introduction to Stochastic Processes I
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Last time: jump rates

Consider a CTMC on Ω with transition probabilities

phij = P[Xt+h = j | Xt = i ].

The jump rates are defined by the matrix Q = (qij)i,j∈Ω, where

qij := lim
h→0

phij
h
∀i 6= j ,

and
qii = −

∑
j 6=i

qij =: −λi .

Last time, we saw how to simulate a CTMC with given jump rates.

Lecture 24 STATS 217 2 / 16



Last time: Embedded DTMC

In doing so, we found it useful to look at the embedded DTMC, which has
transition matrix

Uij =
qij
λi

∀i 6= j ,

and
Uii = 0.

Given the embedded DTMC, we saw that the CTMC can be simulated by
staying at each state with a suitable, exponentially distributed waiting time.

Now, we will see how to recover the transition probabilities from the jump
rates.
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Example

Recall the example of the continuization of a DTMC from last time. Namely,
(Yn)n≥0 is a DTMC on Ω with transition matrix U, N(t) is an independent
PPP with rate λ, and Xt = YN(t) is a CTMC.

We saw that the jump rates of Xt are given by

Q = λ(U − I ),

where I is the |Ω| × |Ω| identity matrix.

Also, the transition probabilities of Xt are given by

(pt)ij = (etQ)ij .

We will see that this holds more generally.
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Chapman-Kolmogorov equations

Recall that for a DTMC, we have the Chapman-Kolmogorov equations

pn+m
ij =

∑
k∈Ω

pnikp
m
kj .

The same argument also applies to a CTMC and shows that

ps+t
ij =

∑
k∈Ω

psikp
t
kj .
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Kolmogorov’s forward equation

In particular,

pt+h
ij − ptij =

(∑
k∈Ω

ptikp
h
kj

)
− ptij

=

ptijp
h
jj +

∑
j 6=k

ptikp
h
kj

− ptij

= ptij(p
h
jj − 1) +

∑
j 6=k

ptikp
h
kj .
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Kolmogorov’s forward equation

So,

d

dt
ptij = lim

h→0

pt+h
ij − ptij

h

= lim
h→0

ptij(p
h
jj − 1) +

∑
j 6=k p

t
ikp

h
kj

h

= lim
h→0

ptij(−
∑

k 6=j p
h
jk) +

∑
j 6=k p

t
ikp

h
kj

h

= ptij

−∑
j 6=k

qjk

+
∑
j 6=k

ptikqkj

= ptijqjj +
∑
j 6=k

ptikqkj

=
∑
k∈Ω

ptikqkj .
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Kolmogorov’s backward equation

Written in matrix form, we have Kolmogorov’s forward equation(
d

dt
P t

)
(t0) = P t0Q.

Similarly, by writing

pt+h
ij − ptij =

(∑
k∈Ω

phikp
t
kj

)
− ptij ,

and computing as before, we have Kolmogorov’s backward equation(
d

dt
P t

)
(t0) = QP t0
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Computing transition probabilities from jump rates

We have shown that

P t0Q =

(
d

dt
P t

)
(t0) = QP t0 .

The solution to this matrix ordinary differential equation with the initial
condition P0 = Id is given by

P t = etQ :=
∞∑
n=0

(tQ)n

n!
.
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Irreducibility

We say that a CTMC (Xt)t≥0 on Ω is irreducible if the embedded DTMC is
irreducible.

By definition of the embedded DTMC, this amounts to the following: for any
i , j ∈ Ω, there exists a finite sequence of states

k0 = i , k1, . . . , kn−1, kn = j

such that
qkm−1km > 0 ∀1 ≤ m ≤ n.

Clearly, (Xt)t≥0 is irreducible if and only if for any pair of states i , j ∈ Ω,
there exists some t (possibly depending on i , j) such that

pti,j > 0.
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Levy’s dichotomy

In fact, if P is irreducible, then for any pair of states i , j ∈ Ω and for every
t > 0,

pti,j > 0.

This is the consequence of Levy’s dichotomy: for a CTMC and for any two
states i , j ∈ Ω, exactly one of the following holds:

P t
i,j > 0 for all t > 0.

P t
i,j = 0 for all t = 0.

In particular, for CTMC, we don’t have to worry about (a)periodicity.
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Levy’s dichotomy

Here’s the idea:

If P t0

i,j > 0 for some t0 > 0, then there must exist some k ≥ 0 such that it is
possible for the embedded chain to go from i to j in exactly k steps.

However, for any t > 0, there is a positive probability that there are exactly k
transitions in the time interval [0, t] (recall that each transition happens after
an independent waiting time, which is exponentially distributed).
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Stationary distributions

Recall that for a DTMC with transition matrix P, we defined a stationary
distribution to be a probability distribution π satisfying

πP = π.

A consequence of this is that

πP t = π ∀t ≥ 0.

For a CTMC, we will take this second statement to be the definition of a
stationary distribution.
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Stationary distributions

However, the condition πP t = π for all t is typically hard to check in practice
since it requires checking a condition for every t ≥ 0.

Therefore, it is typically more convenient to use the following characterization
of the stationary distribution in terms of the jump rates:

πQ = 0.

Why are these two definitions equivalent?

If πP t = π for all t ≥ 0, then

0 =
d

dt
πP t |t=0 = π

d

dt
P t |t=0

= πQP0 = πQ.
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Stationary distributions

Conversely, suppose that πQ = 0. Then,

d

dt
πP t |t=t0 = π

d

dt
P t |t=t0

= πQP t0

= 0.

Therefore, πP t is constant for t ≥ 0 so that

πP t = πP0 = π.
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Detailed balance conditions

The condition πQ = 0 may still be hard to verify in practice, and in many
interesting examples, one finds a stationary distribution/verifies the
stationarity condition using the detailed balance condition, which now
takes the form

πiqij = πjqji ∀i , j .

This implies that π is a stationary distribution since

(πQ)j =
∑
i

πiqij

=
∑
i

πjqji

= πj
∑
i

qji

= 0.

Lecture 24 STATS 217 16 / 16


