STATS 217: Introduction to Stochastic Processes I

Lecture 24

Last time: jump rates

- Consider a CTMC on Ω with transition probabilities

$$
p_{i j}^{h}=\mathbb{P}\left[X_{t+h}=j \mid X_{t}=i\right] .
$$

- The jump rates are defined by the matrix $Q=\left(q_{i j}\right)_{i, j \in \Omega}$, where

$$
q_{i j}:=\lim _{h \rightarrow 0} \frac{p_{i j}^{h}}{h} \quad \forall i \neq j,
$$

and

$$
q_{i i}=-\sum_{j \neq i} q_{i j}=:-\lambda_{i} .
$$

- Last time, we saw how to simulate a CTMC with given jump rates.

Last time: Embedded DTMC

- In doing so, we found it useful to look at the embedded DTMC, which has transition matrix

$$
U_{i j}=\frac{q_{i j}}{\lambda_{i}} \quad \forall i \neq j
$$

and

$$
U_{i i}=0 .
$$

- Given the embedded DTMC, we saw that the CTMC can be simulated by staying at each state with a suitable, exponentially distributed waiting time.
- Now, we will see how to recover the transition probabilities from the jump rates.

Example

- Recall the example of the continuization of a DTMC from last time. Namely, $\left(Y_{n}\right)_{n \geq 0}$ is a DTMC on Ω with transition matrix $U, N(t)$ is an independent PPP with rate λ, and $X_{t}=Y_{N(t)}$ is a CTMC.
- We saw that the jump rates of X_{t} are given by

$$
Q=\lambda(U-I),
$$

where I is the $|\Omega| \times|\Omega|$ identity matrix.

- Also, the transition probabilities of X_{t} are given by

$$
\left(p^{t}\right)_{i j}=\left(e^{t Q}\right)_{i j}
$$

- We will see that this holds more generally.

Chapman-Kolmogorov equations

- Recall that for a DTMC, we have the Chapman-Kolmogorov equations

$$
p_{i j}^{n+m}=\sum_{k \in \Omega} p_{i k}^{n} p_{k j}^{m} .
$$

- The same argument also applies to a CTMC and shows that

$$
p_{i j}^{s+t}=\sum_{k \in \Omega} p_{i k}^{s} p_{k j}^{t} .
$$

Kolmogorov's forward equation

In particular,

$$
\begin{aligned}
p_{i j}^{t+h}-p_{i j}^{t} & =\left(\sum_{k \in \Omega} p_{i k}^{t} p_{k j}^{h}\right)-p_{i j}^{t} \\
& =\left(p_{i j}^{t} p_{j j}^{h}+\sum_{j \neq k} p_{i k}^{t} p_{k j}^{h}\right)-p_{i j}^{t} \\
& =p_{i j}^{t}\left(p_{j j}^{h}-1\right)+\sum_{j \neq k} p_{i k}^{t} p_{k j}^{h} .
\end{aligned}
$$

Kolmogorov's forward equation

So,

$$
\begin{aligned}
\frac{d}{d t} p_{i j}^{t} & =\lim _{h \rightarrow 0} \frac{p_{i j}^{t+h}-p_{i j}^{t}}{h} \\
& =\lim _{h \rightarrow 0} \frac{p_{i j}^{t}\left(p_{j j}^{h}-1\right)+\sum_{j \neq k} p_{i k}^{t} p_{k j}^{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{p_{i j}^{t}\left(-\sum_{k \neq j} p_{j k}^{h}\right)+\sum_{j \neq k} p_{i k}^{t} p_{k j}^{h}}{h} \\
& =p_{i j}^{t}\left(-\sum_{j \neq k} q_{j k}\right)+\sum_{j \neq k} p_{i k}^{t} q_{k j} \\
& =p_{i j}^{t} q_{j j}+\sum_{j \neq k} p_{i k}^{t} q_{k j} \\
& =\sum_{k \in \Omega} p_{i k}^{t} q_{k j}
\end{aligned}
$$

Kolmogorov's backward equation

- Written in matrix form, we have Kolmogorov's forward equation

$$
\left(\frac{d}{d t} P^{t}\right)\left(t_{0}\right)=P^{t_{0}} Q
$$

- Similarly, by writing

$$
p_{i j}^{t+h}-p_{i j}^{t}=\left(\sum_{k \in \Omega} p_{i k}^{h} p_{k j}^{t}\right)-p_{i j}^{t},
$$

and computing as before, we have Kolmogorov's backward equation

$$
\left(\frac{d}{d t} P^{t}\right)\left(t_{0}\right)=Q P^{t_{0}}
$$

Computing transition probabilities from jump rates

- We have shown that

$$
P^{t_{0}} Q=\left(\frac{d}{d t} P^{t}\right)\left(t_{0}\right)=Q P^{t_{0}} .
$$

- The solution to this matrix ordinary differential equation with the initial condition $P^{0}=\mathrm{Id}$ is given by

$$
P^{t}=e^{t Q}:=\sum_{n=0}^{\infty} \frac{(t Q)^{n}}{n!}
$$

Irreducibility

- We say that a CTMC $\left(X_{t}\right)_{t \geq 0}$ on Ω is irreducible if the embedded DTMC is irreducible.
- By definition of the embedded DTMC, this amounts to the following: for any $i, j \in \Omega$, there exists a finite sequence of states

$$
k_{0}=i, k_{1}, \ldots, k_{n-1}, k_{n}=j
$$

such that

$$
q_{k_{m-1} k_{m}}>0 \quad \forall 1 \leq m \leq n .
$$

- Clearly, $\left(X_{t}\right)_{t \geq 0}$ is irreducible if and only if for any pair of states $i, j \in \Omega$, there exists some t (possibly depending on i, j) such that

$$
p_{i, j}^{t}>0 .
$$

Levy's dichotomy

- In fact, if P is irreducible, then for any pair of states $i, j \in \Omega$ and for every $t>0$,

$$
p_{i, j}^{t}>0 .
$$

- This is the consequence of Levy's dichotomy: for a CTMC and for any two states $i, j \in \Omega$, exactly one of the following holds:
- $P_{i, j}^{t}>0$ for all $t>0$.
- $P_{i, j}^{t}=0$ for all $t=0$.
- In particular, for CTMC, we don't have to worry about (a)periodicity.

Levy's dichotomy

Here's the idea:

- If $P_{i, j}^{t_{0}}>0$ for some $t_{0}>0$, then there must exist some $k \geq 0$ such that it is possible for the embedded chain to go from i to j in exactly k steps.
- However, for any $t>0$, there is a positive probability that there are exactly k transitions in the time interval $[0, t]$ (recall that each transition happens after an independent waiting time, which is exponentially distributed).

Stationary distributions

- Recall that for a DTMC with transition matrix P, we defined a stationary distribution to be a probability distribution π satisfying

$$
\pi P=\pi
$$

- A consequence of this is that

$$
\pi P^{t}=\pi \quad \forall t \geq 0
$$

- For a CTMC, we will take this second statement to be the definition of a stationary distribution.

Stationary distributions

- However, the condition $\pi P^{t}=\pi$ for all t is typically hard to check in practice since it requires checking a condition for every $t \geq 0$.
- Therefore, it is typically more convenient to use the following characterization of the stationary distribution in terms of the jump rates:

$$
\pi Q=0 .
$$

- Why are these two definitions equivalent?
- If $\pi P^{t}=\pi$ for all $t \geq 0$, then

$$
\begin{aligned}
0 & =\left.\frac{d}{d t} \pi P^{t}\right|_{t=0}=\left.\pi \frac{d}{d t} P^{t}\right|_{t=0} \\
& =\pi Q P^{0}=\pi Q .
\end{aligned}
$$

Stationary distributions

- Conversely, suppose that $\pi Q=0$. Then,

$$
\begin{aligned}
\left.\frac{d}{d t} \pi P^{t}\right|_{t=t_{0}} & =\left.\pi \frac{d}{d t} P^{t}\right|_{t=t_{0}} \\
& =\pi Q P^{t_{0}} \\
& =0
\end{aligned}
$$

- Therefore, πP^{t} is constant for $t \geq 0$ so that

$$
\pi P^{t}=\pi P^{0}=\pi .
$$

Detailed balance conditions

- The condition $\pi Q=0$ may still be hard to verify in practice, and in many interesting examples, one finds a stationary distribution/verifies the stationarity condition using the detailed balance condition, which now takes the form

$$
\pi_{i} q_{i j}=\pi_{j} q_{j i} \quad \forall i, j
$$

- This implies that π is a stationary distribution since

$$
\begin{aligned}
(\pi Q)_{j} & =\sum_{i} \pi_{i} q_{i j} \\
& =\sum_{i} \pi_{j} q_{j i} \\
& =\pi_{j} \sum_{i} q_{j i} \\
& =0
\end{aligned}
$$

