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Last time: Stationary distributions

Let (Xt)t≥0 be a CTMC on Ω. A probability distribution π on Ω is said to be
a stationary distribution if

πP t = π ∀t ≥ 0

This is equivalent to the condition that

πQ = 0.

In terms of the matrix Q, the detailed balance conditions are given by

πiqij = πjqji ∀i , j ∈ Ω
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Convergence theorem

Let (Xt)t≥0 be an irreducible CTMC on a finite state space Ω. Then, there exists
a unique stationary distribution π, and

max
x∈Ω

TV(P t(x , ·), π)→ 0 as t →∞.

We have already done the work to prove this theorem.
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Existence of stationary distribution

The first point is the existence of the stationary distribution.

Recall the notation λi =
∑

j 6=i qj , Λ = maxi∈Ω λi .

Since Ω is finite, Λ <∞. In this case, recall that we have the representation
Xt = YN(t), where N(t) is a PPP with rate λ and Yn is a DTMC with the
transition matrix

Uij =
qij
Λ
∀i 6= j Uii = 1− λi

Λ

Since (Xt)t≥0 is irreducible, so is U, and hence, it has a unique stationary
distribution π.
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Existence of stationary distribution

We can check that πQ = 0. Indeed,∑
i∈Ω

πiqij = πjqjj +
∑
j 6=i

πiqij

= −πjλj +
∑
i 6=j

πiUijΛ

= −πjλj + Λ
∑
i∈Ω

πiUij − ΛπjUjj

= −πjλj + Λπj − πj(Λ− λj)
= 0.
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Convergence

Note that

TV(P t+s(x , ·), π) = TV(δxP
tPs , πPs)

≤ TV (δxP
t , π).

Hence, TV(P t(x , ·), π) is non-increasing in t, so it suffices to show that it
converges to 0 along (say) the natural numbers.

But P1 is an irreducible and aperiodic transition matrix with unique stationary
distribution π, so that by looking at the corresponding DTMC, we have

TV(Pn(x , ·), π)→ 0 as n→∞.
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Example: M/M/1 queues

This is a popular queuing model in which the arrival of customers is modelled
by a Poisson point process with rate λ. There is a single server, and service
times are independent and exponentially distributed with parameter µ.

Due to the memorylessness property of the exponential distribution, this can
be modelled as a continuous time birth and death chain with jump rates

Qn,n+1 = λ, n = 0, 1, . . .

Qn,n−1 = µ, n = 1, 2, . . .

Suppose instead that there are s servers, and customers are served if there is
at least one server available. This is called the M/M/s queueing model, and
the jump rates are now

Qn,n+1 = λ, n = 0, 1, . . . ,

Qn,n−1 = nµ, n = 1, . . . , s,

Qn,n−1 = sµ, n = s + 1, s + 2, . . . ,
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M/M/1 queues

Suppose that λ < µ i.e., the rate of arrivals is smaller than the rate of
service. Otherwise, the size of the queue explodes.

When λ < µ, we can use the detailed balance conditions

πiQij = πjQji

to find the stationary distribution

πn =

(
1− λ

µ

)(
λ

µ

)n

, n = 0, 1, . . .

Given this stationary distribution, one can compute many quantities of
interest. For instance, the long-run fraction of time that the server is busy is

1− π0 =
λ

µ
.
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M/M/1 queues

Moreover, the expected length of the queue under the equilibrium distribution
is

L =
∞∑
n=0

nπn =
λ

µ− λ
.

Another important quantity is the total time T (waiting time + time with
the server) spent by a customer in the system.

If there are n customers already in the system when a new customer joins the
queue, then since service times are i.i.d. exponentials with parameter µ, the
total time spent by the customer is distributed as a sum of n + 1
i.i.d. exponentials with parameter µ.
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M/M/1 queues

Then, using the law of total probability, we have

P[T ≤ t] = P[T ≤ t | n customers already in the system] · πn
= 1− exp(−t(µ− λ)),

i.e. T has exponential distribution with mean

W =
1

µ− λ
=

L

λ
.
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Little’s law

The relationship
L = λW

is called Little’s law and is true even without the specific distributional
assumptions (i.e. Poisson arrivals and exponential waiting times). Such
queues are called GI/G/1 queues.

Here’s the intuition: Suppose each customer pays $1 for each minute of time
they spend in the system. When there are n customers in the system, the
establishment is earning $n per minute, and hence, the establishment is
earning an average of $L per minute.

On the other hand, if each customer pays for their entire duration when they
arrive, then the average rate of earning is λ×W per minute.
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