STATS 217: Introduction to Stochastic Processes I

Lecture 25

Last time: Stationary distributions

- Let $\left(X_{t}\right)_{t \geq 0}$ be a CTMC on Ω. A probability distribution π on Ω is said to be a stationary distribution if

$$
\pi P^{t}=\pi \quad \forall t \geq 0
$$

- This is equivalent to the condition that

$$
\pi Q=0
$$

- In terms of the matrix Q, the detailed balance conditions are given by

$$
\pi_{i} q_{i j}=\pi_{j} q_{j i} \quad \forall i, j \in \Omega
$$

Convergence theorem

Let $\left(X_{t}\right)_{t \geq 0}$ be an irreducible CTMC on a finite state space Ω. Then, there exists a unique stationary distribution π, and

$$
\max _{x \in \Omega} \operatorname{TV}\left(P^{t}(x, \cdot), \pi\right) \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

We have already done the work to prove this theorem.

Existence of stationary distribution

- The first point is the existence of the stationary distribution.
- Recall the notation $\lambda_{i}=\sum_{j \neq i} q_{j}, \Lambda=\max _{i \in \Omega} \lambda_{i}$.
- Since Ω is finite, $\Lambda<\infty$. In this case, recall that we have the representation $X_{t}=Y_{N(t)}$, where $N(t)$ is a PPP with rate λ and Y_{n} is a DTMC with the transition matrix

$$
U_{i j}=\frac{q_{i j}}{\Lambda} \quad \forall i \neq j \quad U_{i i}=1-\frac{\lambda_{i}}{\Lambda}
$$

- Since $\left(X_{t}\right)_{t \geq 0}$ is irreducible, so is U, and hence, it has a unique stationary distribution π.

Existence of stationary distribution

- We can check that $\pi Q=0$. Indeed,

$$
\begin{aligned}
\sum_{i \in \Omega} \pi_{i} q_{i j} & =\pi_{j} q_{j j}+\sum_{j \neq i} \pi_{i} q_{i j} \\
& =-\pi_{j} \lambda_{j}+\sum_{i \neq j} \pi_{i} U_{i j} \Lambda \\
& =-\pi_{j} \lambda_{j}+\Lambda \sum_{i \in \Omega} \pi_{i} U_{i j}-\Lambda \pi_{j} U_{j j} \\
& =-\pi_{j} \lambda_{j}+\Lambda \pi_{j}-\pi_{j}\left(\Lambda-\lambda_{j}\right) \\
& =0
\end{aligned}
$$

Convergence

- Note that

$$
\begin{aligned}
\operatorname{TV}\left(P^{t+s}(x, \cdot), \pi\right) & =\operatorname{TV}\left(\delta_{x} P^{t} P^{s}, \pi P^{s}\right) \\
& \leq \operatorname{TV}\left(\delta_{x} P^{t}, \pi\right)
\end{aligned}
$$

- Hence, $\operatorname{TV}\left(P^{t}(x, \cdot), \pi\right)$ is non-increasing in t, so it suffices to show that it converges to 0 along (say) the natural numbers.
- But P^{1} is an irreducible and aperiodic transition matrix with unique stationary distribution π, so that by looking at the corresponding DTMC, we have

$$
\operatorname{TV}\left(P^{n}(x, \cdot), \pi\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Example: $\mathrm{M} / \mathrm{M} / 1$ queues

- This is a popular queuing model in which the arrival of customers is modelled by a Poisson point process with rate λ. There is a single server, and service times are independent and exponentially distributed with parameter μ.
- Due to the memorylessness property of the exponential distribution, this can be modelled as a continuous time birth and death chain with jump rates

$$
\begin{array}{ll}
Q_{n, n+1}=\lambda, & n=0,1, \ldots \\
Q_{n, n-1}=\mu, & n=1,2, \ldots
\end{array}
$$

- Suppose instead that there are s servers, and customers are served if there is at least one server available. This is called the $M / M / s$ queueing model, and the jump rates are now

$$
\begin{aligned}
& Q_{n, n+1}=\lambda, \quad n=0,1, \ldots, \\
& Q_{n, n-1}=n \mu, \quad n=1, \ldots, s \\
& Q_{n, n-1}=s \mu, \quad n=s+1, s+2, \ldots,
\end{aligned}
$$

$M / M / 1$ queues

- Suppose that $\lambda<\mu$ i.e., the rate of arrivals is smaller than the rate of service. Otherwise, the size of the queue explodes.
- When $\lambda<\mu$, we can use the detailed balance conditions

$$
\pi_{i} Q_{i j}=\pi_{j} Q_{j i}
$$

to find the stationary distribution

$$
\pi_{n}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}, \quad n=0,1, \ldots
$$

- Given this stationary distribution, one can compute many quantities of interest. For instance, the long-run fraction of time that the server is busy is

$$
1-\pi_{0}=\frac{\lambda}{\mu} .
$$

$M / M / 1$ queues

- Moreover, the expected length of the queue under the equilibrium distribution is

$$
L=\sum_{n=0}^{\infty} n \pi_{n}=\frac{\lambda}{\mu-\lambda} .
$$

- Another important quantity is the total time T (waiting time + time with the server) spent by a customer in the system.
- If there are n customers already in the system when a new customer joins the queue, then since service times are i.i.d. exponentials with parameter μ, the total time spent by the customer is distributed as a sum of $n+1$
i.i.d. exponentials with parameter μ.

$M / M / 1$ queues

- Then, using the law of total probability, we have

$$
\begin{aligned}
\mathbb{P}[T \leq t] & =\mathbb{P}[T \leq t \mid n \text { customers already in the system }] \cdot \pi_{n} \\
& =1-\exp (-t(\mu-\lambda))
\end{aligned}
$$

i.e. T has exponential distribution with mean

$$
W=\frac{1}{\mu-\lambda}=\frac{L}{\lambda} .
$$

Little's law

- The relationship

$$
L=\lambda W
$$

is called Little's law and is true even without the specific distributional assumptions (i.e. Poisson arrivals and exponential waiting times). Such queues are called $G I / G / 1$ queues.

- Here's the intuition: Suppose each customer pays $\$ 1$ for each minute of time they spend in the system. When there are n customers in the system, the establishment is earning $\$ n$ per minute, and hence, the establishment is earning an average of $\$ L$ per minute.
- On the other hand, if each customer pays for their entire duration when they arrive, then the average rate of earning is $\lambda \times W$ per minute.

