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Martingales

Let X1,X2, . . . be a collection of random variables.

We say that the sequence of random variables M0,M1, . . . is a martingale
with respect to X1,X2, . . . if

E[|Mn|] <∞ for all n ≥ 0,
for all n ≥ 1, there exists a function fn : Rn → R such that

Mn = fn(X1, . . . ,Xn),

E[Mn | X1,X2, . . . ,Xn−1] = Mn−1. Explicitly, for any x1, . . . , xn−1,

E[Mn | X1 = x1, . . . ,Xn−1 = xn−1] = fn−1(x1, . . . , xn−1).
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Example

X1,X2, . . . are independent random variables with E[Xi ] = 0 for all i ≥ 1.

Let M0 = 0 and for n ≥ 1,

Mn = X1 + · · ·+ Xn.

Then, M0,M1, . . . is a martingale with respect to X1,X2, . . . .

This generalizes the one-dimensional simple, symmetric random walk.
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Example

X1,X2, . . . are independent random variables with E[Xi ] = 0 and
Var(Xi ) = σ2 for all n ≥ 1.

Then, M0 = 0 and for n ≥ 1,

Mn = (X1 + · · ·+ Xn)2 − nσ2

is a martingale with respect to X1,X2, . . . .

To verify the martingale property, note that

E[Mn −Mn−1 | X1, . . . ,Xn−1] = E[(Xn + Sn−1)2 − S2
n−1 − σ2 | X1, . . . ,Xn−1]

= E[X 2
n + 2XnSn−1 − σ2 | X1, . . . ,Xn−1]

= E[2XnSn−1 | X1, . . . ,Xn−1]

= 2Sn−1E[Xn | X1, . . . ,Xn−1]

= 0
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Example

X1,X2, . . . are independent random variables with Xi ≥ 0 and E[Xi ] = 1 for
all i ≥ 1.

Then, M0 = 1 and for n ≥ 1,

Mn = M0 · X1 · · ·Xn

is a martingale with respect to X1, . . . ,Xn.
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Example

Let Y1,Y2, . . . be i.i.d. random variables with moment generating function

φ(λ) := E[eλYi ] <∞

Let Xi = eλYi/φ(λ). Then, X1,X2, . . . are independent random variables
with E[Xi ] = 1.

Therefore, M0 = 1 and for n ≥ 1,

Mn = M0 · X1 · · ·Xn = eλ(Y1+···+Yn)/φ(λ)n

is a martingale with respect to Y1,Y2, . . . .
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Example

Consider a branching process (Zn)n≥0 with Z0 = 1 and common offspring
distribution ξ with E[ξ] = µ ∈ (0,∞).

Recall this means that

Zn =

Zn−1∑
i=1

ξi ,

where ξ1, ξ2, . . . are i.i.d. copies of ξ.

The sequence M0 = 1 and for n ≥ 1,

Mn =
Zn

µn

is a martingale with respect to M1,M2, . . . .
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Submartingales and supermartingales

A supermartingale is defined similarly to a martingale, except now we
weaken the martingale condition to

E[Mn | X1, . . . ,Xn−1] ≤ Mn−1.

Thinking of Xi as being the outcome of the i th round of the gambling game,
and Mn as being the wealth of the gambler after n rounds of the game,
supermartingales are games that are unfavorable to the gambler.

On the other hand, submartingales are favorable to the gambler i.e., they
satisfy

E[Mn | X1, . . . ,Xn−1] ≥ Mn−1.
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Martingale betting strategy

Consider a gambling game based on successive outcomes of a fair coin toss.

You adopt the following strategy: if you win a round, then in the next round,
you bet $1; if you lose a round, then in the next round, you double your bet.

So, for instance, if you lose in the first three rounds, and win in the fourth
round, your sequence of bets is $1, $2, $4, $8, and your net winnings are

−$1− $2− $4 + $8 = 1.

More generally, if you lose the first k rounds and win the k + 1st round, your
net winnings are

−$(1 + · · ·+ 2k−1) + $2k = $1.

Moreover, in an infinite sequence of fair coin tosses, you will win with
probability 1.
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Martingale betting strategy

Let’s take a look at this game for a fixed number of rounds, say 3 rounds.
Suppose a win for you corresponds to H.

Then, your net winnings are:

TTT − $7

TTH + $1

THT + $0

THH + $2

HTT − $2

HTH + $2

HHT + $1

HHH + $3

Therefore, if M3 denotes your winnings after 3 rounds of the game using the
martingale betting strategy, then

E[M3] = 0.
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Martingale transforms

Is there a smarter way of varying our bets?

We can formally capture betting strategies using the notion of predictable
sequences.

A sequence of random variables A1,A2, . . . is called predictable with respect
to the sequence X1,X2, . . . if for all n ≥ 1,

An = gn(X1, . . . ,Xn−1).

So, if we think of X1,X2, . . . as being the outcomes of rounds of a gambling
game, then An is a function of the information that the gambler has before
placing the bet in the nth round.
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Martingale transforms

Let M0,M1, . . . be a martingale with respect to X1,X2, . . . , and let
A1,A2, . . . be a predictable sequence with respect to X1,X2, . . . .

The martingale transform of {Mn} by {An} is defined by M̃0 = M0 and for
n ≥ 1,

M̃n = M0 + A1(M1 −M0) + A2(M2 −M1) + · · ·+ An(Mn −Mn−1).

Intuition: (Mk −Mk−1) is the gain from the k th round of the gambling game.
The gambler looks at all previous outcomes X1, . . . ,Xk−1, and comes up with
a multiplier Ak for the k th round.
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Martingale transforms are martingales

Let M0,M1, . . . be a martingale with respect to X1,X2, . . . , and let
A1,A2, . . . be a predictable sequence with respect to X1,X2, . . . .

Let M̃0, M̃1, . . . be the martingale transform of {Mn} by {An}.

Then, M̃0, M̃1, . . . is also a martingale with respect to X1,X2, . . . .

Indeed,

E[M̃n − M̃n−1 | X1, . . . ,Xn−1] = E[An(Mn −Mn−1) | X1, . . . ,Xn−1]

= An · E[Mn −Mn−1 | X1, . . . ,Xn−1]

= 0.
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