this week: martingales

STATS 217: Introduction to Stochastic Processes I

Lecture 26

Martingales

- Let X_{1}, X_{2}, \ldots be a collection of random variables.
- We say that the sequence of random variables M_{0}, M_{1}, \ldots is a martingale with respect to X_{1}, X_{2}, \ldots if

Martingales

- Let X_{1}, X_{2}, \ldots be a collection of random variables.
- We say that the sequence of random variables M_{0}, M_{1}, \ldots is a martingale with respect to X_{1}, X_{2}, \ldots if
- $\mathbb{E}\left[\left|M_{n}\right|\right]<\infty$ for all $n \geq 0$,

Martingales

- Let X_{1}, X_{2}, \ldots be a collection of random variables.
- We say that the sequence of random variables M_{0}, M_{1}, \ldots is a martingale with respect to X_{1}, X_{2}, \ldots if
- $\mathbb{E}\left[\left|M_{n}\right|\right]<\infty$ for all $n \geq 0$,
- for all $n \geq 1$, there exists a function $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
M_{n}=f_{n}\left(X_{1}, \ldots, X_{n}\right),
$$

Martingales

- Let X_{1}, X_{2}, \ldots be a collection of random variables.
- We say that the sequence of random variables M_{0}, M_{1}, \ldots is a martingale with respect to X_{1}, X_{2}, \ldots if
- $\mathbb{E}\left[\left|M_{n}\right|\right]<\infty$ for all $n \geq 0$,
- for all $n \geq 1$, there exists a function $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
M_{n}=f_{n}\left(X_{1}, \ldots, X_{n}\right)
$$

Example

$$
\begin{aligned}
\mathbb{I E}\left[M_{n-1} \mid x_{1}=x_{1} \ldots x_{n-1}=x_{n-1}\right]^{1} & =f_{n-1}\left(x_{1} \ldots x_{n-1}\right) \\
f_{n-1}\left(x_{1} \ldots x_{n-1}\right) & =M_{n-1}
\end{aligned}
$$

cog. simple symmetric R.w. in 1-D
then $x_{i}= \begin{cases}+1 & \text { wop. } 1 / 2 \\ -1 & \text { w.p. } 1 / 2\end{cases}$

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ for all $i \geq 1$.
- Let $M_{0}=0$ and for $n \geq 1$,

$$
\mathbb{E}\left[\left|x_{i}\right|\right]<\infty
$$

$$
M_{n}=X_{1}+\cdots+X_{n} .
$$

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ for all $i \geq 1$.
- Let $M_{0}=0$ and for $n \geq 1$,

$$
\mathbb{E}\left[\left|x_{i}\right|\right]<\infty
$$

$$
M_{n}=X_{1}+\cdots+X_{n}
$$

- Then, M_{0}, M_{1}, \ldots is a martingale with respect to X_{1}, X_{2}, \ldots.
(1) $\quad \mathbb{E}\left(\left|\mathbb{1}_{n}\right|\right) \leq \mathbb{E}[\overline{\mid}| |]+\ldots+\mathbb{E}\left[\left|x_{n}\right|\right]<\infty$.
(2) $\quad \underline{1}_{n}=f\left(x_{1} \ldots x_{n}\right)$
(3) $\mathbb{E}\left[M_{n}\left(x_{1} \ldots x_{n-1}\right]=M_{n-1}\right.$

$$
\begin{aligned}
\Leftrightarrow \sqrt{E}\left[M_{n}-M_{n-1} \mid x_{1} \ldots x_{n-1}\right] & =\mathbb{E}\left[x_{n} \mid x_{1} \ldots x_{n-1}\right] \\
& =\mathbb{E}\left[x_{n}\right]=0 .
\end{aligned}
$$

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ for all $i \geq 1$.
- Let $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=X_{1}+\cdots+X_{n}
$$

- Then, M_{0}, M_{1}, \ldots is a martingale with respect to X_{1}, X_{2}, \ldots.
- This generalizes the one-dimensional simple, symmetric random walk.

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $n \geq 1$.

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $n \geq 1$.

$$
s_{n}=x_{1}+\ldots+x_{n}
$$

- Then, $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n \sigma^{2}=S_{n}^{2}-n \sigma^{2}
$$

is a martingale with respect to X_{1}, X_{2}, \ldots.

$$
\begin{aligned}
& * \underline{I}_{r}=f_{\underline{r}}\left(x_{1} \ldots x_{n}\right) \\
& * \quad \mathbb{E}\left[M_{r}-M_{n-1} \mid x_{1} \ldots x_{n-1}\right]=0
\end{aligned}
$$

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $n \geq 1$.

$$
s_{n}=x_{1}+\ldots+x_{n}
$$

- Then, $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n \sigma^{2}
$$

is a martingale with respect to X_{1}, X_{2}, \ldots.

- To verify the martingale property, note that

$$
\begin{aligned}
& \mathbb{E}\left[M_{n}-M_{n-1} \mid X_{1}, \ldots, X_{n-1}\right]=\mathbb{E}\left[\left(X_{n}+S_{n-1}\right)^{2}-S_{n-1}^{2}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& \left(X_{n}+S_{n-1}\right)^{2}-n \sigma^{2} \\
& M_{n-1}=S_{n-1}^{2}-(n-1) \sigma^{2}
\end{aligned}
$$

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $n \geq 1$.
- Then, $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n \sigma^{2}
$$

is a martingale with respect to X_{1}, X_{2}, \ldots.

- To verify the martingale property, note that

$$
\begin{aligned}
& \mathbb{E}\left[M_{n}-M_{n-1} \mid X_{1}, \ldots, X_{n-1}\right]=\mathbb{E}\left[\left(X_{n}+S_{n-1}\right)^{2}-S_{n-1}^{2}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =\mathbb{E}\left[X_{n}^{2}+2 X_{n} S_{n-1}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =E\left[x_{n}^{2} \mid x_{1} \ldots x_{n-1}\right]-\infty^{2} \\
& \sim_{n}^{\sim} \\
& +2 \pi\left[x_{n} S_{n-1} \mid x_{1} \ldots x_{n-1}\right\rceil \\
& \begin{aligned}
\mathbb{E}\left[x_{n}^{2}\right] & =\operatorname{var}\left(x_{n}\right) \\
& =\sigma^{2 .}
\end{aligned} \\
& =2 \bar{S}_{n-1} \sqrt{-E}\left[x_{n} \mid x_{1} \ldots x_{n-1}\right]
\end{aligned}
$$

Example

$$
=2 S_{n-1} \mathbb{E}\left[x_{n}\right]=0 .
$$

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $n \geq 1$.
- Then, $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n \sigma^{2}
$$

is a martingale with respect to X_{1}, X_{2}, \ldots.

- To verify the martingale property, note that

$$
\begin{aligned}
\mathbb{E}\left[M_{n}-M_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] & =\mathbb{E}\left[\left(X_{n}+S_{n-1}\right)^{2}-S_{n-1}^{2}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =\mathbb{E}\left[X_{n}^{2}+2 X_{n} S_{n-1}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =\mathbb{E}\left[2 X_{n} S_{n-1} \mid X_{1}, \ldots, X_{n-1}\right]
\end{aligned}
$$

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $n \geq 1$.
- Then, $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n \sigma^{2}
$$

is a martingale with respect to X_{1}, X_{2}, \ldots.

- To verify the martingale property, note that

$$
\begin{aligned}
\mathbb{E}\left[M_{n}-M_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] & =\mathbb{E}\left[\left(X_{n}+S_{n-1}\right)^{2}-S_{n-1}^{2}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =\mathbb{E}\left[X_{n}^{2}+2 X_{n} S_{n-1}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =\mathbb{E}\left[2 X_{n} S_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =2 S_{n-1} \mathbb{E}\left[X_{n} \mid X_{1}, \ldots, X_{n-1}\right]
\end{aligned}
$$

Example

- X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $n \geq 1$.
- Then, $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n \sigma^{2}
$$

is a martingale with respect to X_{1}, X_{2}, \ldots.

- To verify the martingale property, note that

$$
\begin{aligned}
\mathbb{E}\left[M_{n}-M_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] & =\mathbb{E}\left[\left(X_{n}+S_{n-1}\right)^{2}-S_{n-1}^{2}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =\mathbb{E}\left[X_{n}^{2}+2 X_{n} S_{n-1}-\sigma^{2} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =\mathbb{E}\left[2 X_{n} S_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =2 S_{n-1} \mathbb{E}\left[X_{n} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =0
\end{aligned}
$$

Example

- X_{1}, X_{2}, \ldots are independent random variables with $X_{i} \geq 0$ and $\mathbb{E}\left[X_{i}\right]=1$ for all $i \geq 1$.

Example

- X_{1}, X_{2}, \ldots are independent random variables with $X_{i} \geq 0$ and $\mathbb{E}\left[X_{i}\right]=1$ for all $i \geq 1$.
- Then, $M_{0}=1$ and for $n \geq 1$,

$$
M_{n}=M_{0} \cdot X_{1} \cdots X_{n}
$$

is a martingale with respect to X_{1}, \ldots, X_{n}.

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{n} \mid x_{1} \ldots x_{n-1}\right] \\
= & \mathbb{I E}\left[M_{n-1} x_{n} \mid x_{1} \ldots x_{n-1}\right] \\
= & M_{n-1} \operatorname{IE}\left[x_{n}\right]=1 \cdot M_{n-1}=M_{n-1}
\end{aligned}
$$

Example

- Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables with moment generating function

$$
\phi(\lambda):=\mathbb{E}\left[e^{\lambda Y_{i}}\right]<\infty
$$

Example

- Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables with moment generating function

$$
\phi(\lambda):=\mathbb{E}\left[e^{\lambda Y_{i}}\right]<\infty
$$

- Let $X_{i}=e^{\lambda Y_{i}} / \phi(\lambda)$. Then, X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=1$.

$$
\frac{\mathbb{E}\left[e^{\lambda Y_{i}}\right]}{\phi(\lambda)}=\frac{\psi(\lambda)}{\psi(\lambda)}=1 .
$$

Example

- Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables with moment generating function

$$
\phi(\lambda):=\mathbb{E}\left[e^{\lambda Y_{i}}\right]<\infty
$$

- Let $X_{i}=e^{\lambda Y_{i}} / \phi(\lambda)$. Then, X_{1}, X_{2}, \ldots are independent random variables with $\mathbb{E}\left[X_{i}\right]=1$.
- Therefore, $M_{0}=1$ and for $n \geq 1$,

$$
M_{n}=M_{0} \cdot X_{1} \cdots X_{n}=\underbrace{e^{\lambda\left(Y_{1}+\cdots+Y_{n}\right)} / \phi(\lambda)^{n}}
$$

is a martingale with respect to Y_{1}, Y_{2}, \ldots.

Example

- Consider a branching process $\left(Z_{n}\right)_{n \geq 0}$ with $Z_{0}=1$ and common offspring distribution ξ with $\mathbb{E}[\xi]=\mu \in(0, \infty)$.

Example

- Consider a branching process $\left(Z_{n}\right)_{n \geq 0}$ with $Z_{0}=1$ and common offspring distribution ξ with $\mathbb{E}[\xi]=\mu \in(0, \infty)$.
- Recall this means that

$$
Z_{n}=\sum_{i=1}^{Z_{n-1}} \xi_{i}
$$

where ξ_{1}, ξ_{2}, \ldots are i.i.d. copies of ξ.

Example

- Consider a branching process $\left(Z_{n}\right)_{n \geq 0}$ with $Z_{0}=1$ and common offspring distribution ξ with $\mathbb{E}[\xi]=\mu \in(0, \infty)$.
- Recall this means that

$$
\begin{aligned}
& z_{n}=\sum_{i=1}^{z_{n-1}} \xi_{i}, \quad \mathbb{E}\left[M_{n} \mid z_{0} \ldots z_{n-1}\right] \\
& \text { of } \xi
\end{aligned}
$$

where ξ_{1}, ξ_{2}, \ldots are i.i.d. copies of ξ.

- The sequence $M_{0}=1$ and for $n \geq 1$,

$$
\begin{aligned}
& \geq 1 \\
& M_{n}=\frac{Z_{n}}{\mu^{n}}
\end{aligned}
$$

$$
=\frac{1}{\mu^{n}} \mathbb{E}\left[z_{n} \mid z_{n-1}\right]
$$

is a martingale with respect to M_{1}, M_{2}, \ldots.

$$
=\frac{1}{\mu^{n}}\left[\mu \cdot z_{n-1}\right]
$$

$$
=\frac{z_{n-1}}{\mu^{n-1}}=M_{n-1}
$$

Submartingales and supermartingales

- A supermartingale is defined similarly to a martingale, except now we weaken the martingale condition to

$$
\begin{aligned}
\mathbb{E}\left[M_{n} \mid X_{1}, \ldots, X_{n-1}\right] & \leq M_{n-1} . \\
& \bigoplus \text { for } \mathrm{m} \cdot g
\end{aligned}
$$

Submartingales and supermartingales

- A supermartingale is defined similarly to a martingale, except now we weaken the martingale condition to

$$
\mathbb{E}\left[M_{n} \mid X_{1}, \ldots, X_{n-1}\right] \leq M_{n-1} .
$$

- Thinking of X_{i} as being the outcome of the $i^{\text {th }}$ round of the gambling game, and M_{n} as being the wealth of the gambler after n rounds of the game, supermartingales are games that are unfavorable to the gambler.

Submartingales and supermartingales

- A supermartingale is defined similarly to a martingale, except now we weaken the martingale condition to

$$
\mathbb{E}\left[M_{n} \mid X_{1}, \ldots, X_{n-1}\right] \leq M_{n-1}
$$

- Thinking of X_{i} as being the outcome of the $i^{\text {th }}$ round of the gambling game, and M_{n} as being the wealth of the gambler after n rounds of the game, supermartingales are games that are unfavorable to the gambler.
- On the other hand, submartingales are favorable to the gambler i.e., they satisfy

$$
\mathbb{E}\left[M_{n} \mid X_{1}, \ldots, X_{n-1}\right] \geq M_{n-1}
$$

Martingale betting strategy in the background: ind. fair coin tosses

- Consider a gambling game based on successive outcomes of a fair coin toss.
- You adopt the following strategy: if you win a round, then in the next round, you bet $\$ 1$; if you lose a round, then in the next round, you double your bet.

Martingale betting strategy

- Consider a gambling game based on successive outcomes of a fair coin toss.
- You adopt the following strategy: if you win a round, then in the next round, you bet $\$ 1$; if you lose a round, then in the next round, you double your bet.
- So, for instance, if you lose in the first three rounds, and win in the fourth round, your sequence of bets is $\$ 1, \$ 2, \$ 4, \$ 8$, and your net winnings are

$$
\begin{aligned}
& -\$ 1-\$ 2-\$ 4+\$ 8=1 . \\
& m \sim \sim \sim
\end{aligned}
$$

Martingale betting strategy

- Consider a gambling game based on successive outcomes of a fair coin toss.
- You adopt the following strategy: if you win a round, then in the next round, you bet $\$ 1$; if you lose a round, then in the next round, you double your bet.
- So, for instance, if you lose in the first three rounds, and win in the fourth round, your sequence of bets is $\$ 1, \$ 2, \$ 4, \$ 8$, and your net winnings are

$$
-\$ 1-\$ 2-\$ 4+\$ 8=1
$$

- More generally, if you lose the first k rounds and win the $k+1^{\text {st }}$ round, your net winnings are

$$
-\$\left(1+\cdots+2^{k-1}\right)+\$ 2^{k}=\$ 1
$$

Martingale betting strategy

- Consider a gambling game based on successive outcomes of a fair coin toss.
- You adopt the following strategy: if you win a round, then in the next round, you bet $\$ 1$; if you lose a round, then in the next round, you double your bet.
- So, for instance, if you lose in the first three rounds, and win in the fourth round, your sequence of bets is $\$ 1, \$ 2, \$ 4, \$ 8$, and your net winnings are

$$
-\$ 1-\$ 2-\$ 4+\$ 8=1
$$

- More generally, if you lose the first k rounds and win the $k+1^{\text {st }}$ round, your net winnings are

$$
\left.-\$\left(1+\cdots+2^{k-1}\right)+\$ 2^{k}=\$ 1\right\}
$$

- Moreover, in an infinite sequence of fair coin tosses, you will win with probability 1.

Martingale betting strategy

- Let's take a look at this game for a fixed number of rounds, say 3 rounds. Suppose a win for you corresponds to H.

Martingale betting strategy

- Let's take a look at this game for a fixed number of rounds, say 3 rounds. Suppose a win for you corresponds to H.
- Then, your net winnings are:

Martingale betting strategy

- Let's take a look at this game for a fixed number of rounds, say 3 rounds. Suppose a win for you corresponds to H.
- Then, your net winnings are:

TTT	$-\$ 7$
TTH	$+\$ 1$
THT	$+\$ 0$
THH	$+\$ 2$
HTT	$-\$ 2$
HTH	$+\$ 2$
HHT	$+\$ 1$
HHH	$+\$ 3$

- Therefore, if M_{3} denotes your winnings after 3 rounds of the game using the martingale betting strategy, then

$$
\mathbb{E}\left[M_{3}\right]=0 .
$$

Martingale transforms

- Is there a smarter way of varying our bets?

Martingale transforms

- Is there a smarter way of varying our bets?
- We can formally capture betting strategies using the notion of predictable sequences.

Martingale transforms

- Is there a smarter way of varying our bets?
- We can formally capture betting strategies using the notion of predictable sequences.
- A sequence of random variables A_{1}, A_{2}, \ldots is called predictable with respect to the sequence X_{1}, X_{2}, \ldots if for all $n \geq 1$,

$$
A_{n}=g_{n}\left(X_{1}, \ldots, X_{n-1}\right) .
$$

Martingale transforms

- Is there a smarter way of varying our bets?
- We can formally capture betting strategies using the notion of predictable sequences.
- A sequence of random variables A_{1}, A_{2}, \ldots is called predictable with respect to the sequence X_{1}, X_{2}, \ldots if for all $n \geq 1$,

$$
A_{n}=g_{n}\left(X_{1}, \ldots, X_{n-1}\right) .
$$

- So, if we think of X_{1}, X_{2}, \ldots as being the outcomes of rounds of a gambling game, then A_{n} is a function of the information that the gambler has before placing the bet in the $n^{\text {th }}$ round.

Martingale transforms

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots.

Martingale transforms

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots.
- The martingale transform of $\left\{M_{n}\right\}$ by $\left\{A_{n}\right\}$ is defined by $\widetilde{M}_{0}=M_{0}$ and for $n \geq 1$,

$$
\tilde{M}_{n}=M_{0}+A_{1}\left(\widetilde{M_{1}-M_{0}}\right)+A_{2}\left(\widetilde{M_{2}-M_{1}}\right)+\cdots+A_{n}\left(\overline{M_{n}-M_{n-1}}\right)
$$

$$
\begin{gathered}
\text { (1) e.g. } \Gamma^{\prime} 1_{n}=x_{1}+\cdots+x_{n} \\
\downarrow
\end{gathered}
$$

$$
\begin{aligned}
\tilde{M}_{n}= & M_{0}+A_{1} X_{1}+A_{2} X_{2} \\
& 0
\end{aligned}
$$

$$
A_{n}=f_{n}\left(x_{1} \ldots x_{n-1}\right)
$$

Martingale transforms

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots.
- The martingale transform of $\left\{M_{n}\right\}$ by $\left\{A_{n}\right\}$ is defined by $\widetilde{M}_{0}=M_{0}$ and for $n \geq 1$,

$$
\begin{aligned}
& \widetilde{M}_{n}=M_{0}+A_{1}\left(M_{1}-M_{0}\right)+A_{2}\left(M_{2}-M_{1}\right)+\cdots+A_{n}\left(M_{n}-M_{n-1}\right) . \\
& \sim \text { marhingale differences }
\end{aligned}
$$

- Intuition: $\left(M_{k}-M_{k-1}\right)$ is the gain from the $k^{t h}$ round of the gambling game. The gambler looks at all previous outcomes X_{1}, \ldots, X_{k-1}, and comes up with a multiplier A_{k} for the $k^{\text {th }}$ round.

Martingale transforms are martingales

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots.
- Let $\widetilde{M}_{0}, \widetilde{M}_{1}, \ldots$ be the martingale transform of $\left\{M_{n}\right\}$ by $\left\{A_{n}\right\}$.

Martingale transforms are martingales

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots
- Let $\widetilde{M}_{0}, \widetilde{M}_{1}, \ldots$ be the martingale transform of $\left\{M_{n}\right\}$ by $\left\{A_{n}\right\}$.
- Then, $\widetilde{M}_{0}, \widetilde{M}_{1}, \ldots$ is also a martingale with respect to X_{1}, X_{2}, \ldots.

$$
\begin{aligned}
& \tilde{M}_{n}=g_{n}\left(x_{1} \ldots x_{n}\right) \\
& \mathbb{E}\left[\tilde{M}_{n}-\tilde{M}_{n-1} \mid x_{1} \ldots x_{n-1}\right]=0 \\
& \tilde{M_{n}}-\tilde{M}_{n-1}=A_{n} \cdot\left(M_{n}-M_{n-1}\right) \\
& \mathbb{E}\left[A_{n} \cdot\left(M_{n}-M_{n-1}\right) \mid x_{1} \ldots x_{n-1}\right]=A_{n} \mathbb{E}\left[M_{n}-M_{n-1} \mid x_{1} \ldots x_{n-1}\right] \\
&=A_{n} \cdot 0=0
\end{aligned}
$$

Martingale transforms are martingales

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots.
- Let $\widetilde{M}_{0}, \widetilde{M}_{1}, \ldots$ be the martingale transform of $\left\{M_{n}\right\}$ by $\left\{A_{n}\right\}$.
- Then, $\widetilde{M}_{0}, \widetilde{M}_{1}, \ldots$ is also a martingale with respect to X_{1}, X_{2}, \ldots.
- Indeed,

$$
\begin{aligned}
\mathbb{E}\left[\tilde{M}_{n}-\tilde{M}_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] & =\mathbb{E}\left[A_{n}\left(M_{n}-M_{n-1}\right) \mid X_{1}, \ldots, X_{n-1}\right] \\
& =A_{n} \cdot \mathbb{E}\left[M_{n}-M_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] \\
& =0 .
\end{aligned}
$$

