
STATS 217: Introduction to Stochastic Processes I

Lecture 27
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Last time: martingale transforms

Let M0,M1, . . . be a martingale with respect to X1,X2, . . . , and let
A1,A2, . . . be a predictable sequence with respect to X1,X2, . . . .

The martingale transform of {Mn} by {An} is defined by M̃0 = M0 and for
n ≥ 1,

M̃n = M0 + A1(M1 −M0) + A2(M2 −M1) + · · ·+ An(Mn −Mn−1).

Intuition: (Mk −Mk−1) is the gain from the k th round of the gambling game.
The gambler looks at all previous outcomes X1, . . . ,Xk−1, and comes up with
a multiplier Ak for the k th round.
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Last time: martingale transforms are martingales

Let M0,M1, . . . be a martingale with respect to X1,X2, . . . , and let
A1,A2, . . . be a predictable sequence with respect to X1,X2, . . . .

Let M̃0, M̃1, . . . be the martingale transform of {Mn} by {An}.
Then, M̃0, M̃1, . . . is also a martingale with respect to X1,X2, . . . .

Indeed,

E[M̃n − M̃n−1 | X1, . . . ,Xn−1] = E[An(Mn −Mn−1) | X1, . . . ,Xn−1]

= An · E[Mn −Mn−1 | X1, . . . ,Xn−1]

= 0.
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Stopped martingales are martingales

Recall that a stopping time with respect to X0,X1,X2, . . . is a random
variable τ taking values in {0, 1, 2, . . . } ∪ {∞} if for all 0 ≤ n, the event
{τ ≤ n} is determined by X0, . . . ,Xn i.e.,

1τ≤n = fn(X0, . . . ,Xn).

Note that if τ is a stopping time, then

1τ≥n = 1− τ≤n−1 = gn−1(X0, . . . ,Xn−1).

Let M0,M1, . . . be a martingale with respect to X1,X2, . . . and let τ be a
stopping time with respect to X0 = M0,X1,X2, . . . . Then, the stopped
process Mmin(0,τ),Mmin(1,τ), . . . is also a martingale with respect to
X1,X2, . . . .
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Stopped martingales are martingales

To see this, note that

Mmin(n,τ) = Mn1τ≥n + Mτ1τ≤n−1

= M0 +
n∑

k=1

1τ≥k · (Mk −Mk−1).

Since 1τ≥k = gk−1(X0, . . . ,Xk−1), it follows that

M̃n = Mmin(n,τ)

is the martingale transform of M0,M1, . . . by the predictable sequence
Ak = 1τ≥k , and hence, is also a martingale.
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Example: Gambler’s ruin revisited

Consider the simple symmetric random walk on the integers starting from 0
and with steps X1,X2, . . . .

Let M0 = 0 and Mn = X1 + · · ·+ Xn. Then, Mn is a martingale with respect
to X1,X2, . . . .

Let τ denote the first time that the walk visits A or -B.

In the first lecture, we saw that E[τ ] <∞ and that

P[Mτ = A] =
B

A + B
.

Here’s another way to see this. Since M̃n = Mmin(n,τ) is a martingale, we
must have

E[M̃n] = E[E[M̃n | M̃n−1]] = E[M̃n−1].
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Example: Gambler’s ruin revisited

Therefore, by iteration,
E[Mmin(n,τ)] = 0

and since P[τ <∞] = 1 and |M̃n| ≤ max(A,B), we can take the limit as
n→∞ to get that

E[Mτ ] = 0

On the other hand, we have

E[Mτ ] = A · P[Mτ = A]− B · P[Mτ = −B]

= (A + B) · P[Mτ = A]− B.

Combining these two equations, we get that

P[Mτ = A] =
B

A + B
.

As an exercise, you can recover the result for the biased case by starting with
the martingale Mn = (q/p)X1+···+Xn .
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Example: Gambler’s ruin revisited

We also saw that E[τ ] = AB.

This can also be proved using a martingale argument. Recall from last time
that M0 = 0 and for n ≥ 1,

Mn = (X1 + · · ·+ Xn)2 − n

is a martingale.

As before, we consider the stopped martingale and note that

E[Mmin(n,τ)] = 0.

Using E[τ ] <∞, we can again take the limit as n→∞ to conclude that

E[Mτ ] = 0.
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Example: Gambler’s ruin revisited

On the other hand,

E[Mτ ] = E[Mτ | (X1 + · · ·+ Xτ ) = A] · P[X1 + · · ·+ Xτ = A]+

E[Mτ | (X1 + · · ·+ Xτ ) = B] · P[X1 + · · ·+ Xτ = B]

= A2 · B

A + B
+ B2 · A

A + B
− E[τ ]

Setting the right hand side to 0 gives

E[τ ] = AB.
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Example: a card game

Consider the following card game.:

There is a randomly shuffled deck of 52 cards, 26 of which are red, and 26 of
which are black.

The dealer deals one card at a time, face up.

You are allowed to interject at most once to say that the next card is red.

If the next card is indeed red, then you win $1. If the next card is black, you
win nothing.

What is the optimal expected payoff? What is a strategy achieving this
payoff?
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Example: a card game

Formally, let the revealed cards be X1,X2, . . . ,X52.

Your goal is to come up with a stopping time τ with respect to
X0 = 0,X1,X2, . . . ,X52 in order to maximize

E[P[Xτ+1 = red | X1, . . . ,Xτ ]].

If you set τ = 0 (i.e., you always guess that the first card is red), then clearly,

E[P[Xτ+1 = red | X1, . . . ,Xτ ]] = P[X1 = red] = 1/2.

Can you do better? No!
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Example: a card game

Note that P[Xτ+1 = red | X1, . . . ,Xτ ] = P[X52 = red | X1, . . . ,Xτ ].

Therefore, our goal can be rephrased as trying to maximize

E[Mτ ],

where M0 = 1/2 and for n ≥ 1,

Mn = P[X52 = red | X1, . . . ,Xn].

Since

E[P[X52 = red | X1, . . . ,Xn] | X1, . . . ,Xn−1] = P[X52 = red | X1, . . . ,Xn−1],

it follows that Mn is a martingale. This is an example of a Doob martingale.

Lecture 27 STATS 217 12 / 13



Example: a card game

Therefore, Mmin(n,τ) is also a martingale.

Since τ ≤ 51, it follows that

E[Mτ ] = E[Mmin(τ,51)]

= E[Mmin(τ,0)]

= E[M0]

= P[X52 = red]

= 1/2.
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