STATS 217: Introduction to Stochastic Processes I

Lecture 27

Last time: martingale transforms

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots.
- The martingale transform of $\left\{M_{n}\right\}$ by $\left\{A_{n}\right\}$ is defined by $\widetilde{M}_{0}=M_{0}$ and for $n \geq 1$,

$$
\begin{gathered}
\widetilde{M}_{n}=M_{0}+A_{1}\left(M_{1}-M_{0}\right)+\underline{A_{2}}\left(M_{2}-M_{1}\right)+\cdots+A_{n}\left(M_{n}-M_{n-1}\right) .
\end{gathered}
$$

- Intuition: $\left(M_{k}-M_{k-1}\right)$ is the gain from the $k^{t h}$ round of the gambling game. The gambler looks at all previous outcomes X_{1}, \ldots, X_{k-1}, and comes up with a multiplier A_{k} for the $k^{\text {th }}$ round.

Last time: martingale transforms are martingales

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots, and let A_{1}, A_{2}, \ldots be a predictable sequence with respect to X_{1}, X_{2}, \ldots.
- Let $\widetilde{M}_{0}, \widetilde{M}_{1}, \ldots$ be the martingale transform of $\left\{M_{n}\right\}$ by $\left\{A_{n}\right\}$.
- Then, $\widetilde{M}_{0}, \widetilde{M}_{1}, \ldots$ is also a martingale with respect to X_{1}, X_{2}, \ldots.
- Indeed,

$$
\begin{aligned}
& \mathbb{E}\left[\widetilde{M}_{n}-\widetilde{M}_{n-1} \mid X_{1}, \ldots, X_{n-1}\right]=\mathbb{E}\left[A_{n}\left(M_{n}-M_{n-1}\right) \mid X_{1}, \ldots, X_{n-1}\right] \\
&=A_{n} \cdot \mathbb{E}\left[M_{n}-M_{n-1} \mid X_{1}, \ldots, X_{n-1}\right] \\
&=0 . \\
& \mathbb{E}\left[\tilde{M}_{n}\right]=\mathbb{E}\left(\mathbb{E}\left[\tilde{M}_{n} \mid \widetilde{M}_{n-1}\right]\right) \\
&=\mathbb{E}\left[\tilde{M}_{n-1}\right] \xrightarrow{\text { iterate this }} \mathbb{\mathbb { E }}\left[\tilde{M}_{n}\right] \\
&=\mathbb{E}\left[\tilde{M}_{0}\right]=M_{0} .
\end{aligned}
$$

Stopped martingales are martingales

"optional stopping theorem"

- Recall that a stopping time with respect to $X_{0}, X_{1}, X_{2}, \ldots$ is a random variable τ taking values in $\{0,1,2, \ldots\} \cup\{\infty\}$ if for all $0 \leq n$, the event $\{\tau \leq n\}$ is determined by X_{0}, \ldots, X_{n} i.e.,

$$
{\underset{\sim}{\tau \leq n}}_{\mathbb{1}_{\tau \leq n}}=f_{n}\left(X_{0}, \ldots, X_{n}\right) .
$$

Stopped martingales are martingales

- Recall that a stopping time with respect to $X_{0}, X_{1}, X_{2}, \ldots$ is a random variable τ taking values in $\{0,1,2, \ldots\} \cup\{\infty\}$ if for all $0 \leq n$, the event $\{\tau \leq n\}$ is determined by X_{0}, \ldots, X_{n} i.e.,

$$
\mathbb{1}_{\tau \leq n}=\underline{f_{n}\left(X_{0}, \ldots, X_{n}\right) .}
$$

- Note that if τ is a stopping time, then

$$
\mathbb{1}_{\tau \geq n}=1-\frac{1}{T} \leq n-1=g_{n-1}\left(X_{0}, \ldots, X_{n-1}\right) .
$$

U

Stopped martingales are martingales

- Recall that a stopping time with respect to $X_{0}, X_{1}, X_{2}, \ldots$ is a random variable τ taking values in $\{0,1,2, \ldots\} \cup\{\infty\}$ if for all $0 \leq n$, the event $\{\tau \leq n\}$ is determined by X_{0}, \ldots, X_{n} i.e.,

$$
\mathbb{1}_{\tau \leq n}=f_{n}\left(X_{0}, \ldots, X_{n}\right) .
$$

- Note that if τ is a stopping time, then

$$
\mathbb{1}_{\tau \geq n}=1-\tau_{\leq n-1}=g_{n-1}\left(X_{0}, \ldots, X_{n-1}\right) .
$$

- Let M_{0}, M_{1}, \ldots be a martingale with respect to $\widetilde{X_{1}, X_{2}}, \ldots$ and let τ be a stopping time with respect to $X_{0}=M_{0}, X_{1}, X_{2}, \ldots$.

Stopped martingales are martingales

- Recall that a stopping time with respect to $X_{0}, X_{1}, X_{2}, \ldots$ is a random variable τ taking values in $\{0,1,2, \ldots\} \cup\{\infty\}$ if for all $0 \leq n$, the event $\{\tau \leq n\}$ is determined by X_{0}, \ldots, X_{n} i.e.,

$$
\mathbb{1}_{\tau \leq n}=f_{n}\left(X_{0}, \ldots, X_{n}\right) .
$$

- Note that if τ is a stopping time, then

$$
\mathbb{1}_{\tau \geq n}=1-\tau_{\leq n-1}=g_{n-1}\left(X_{0}, \ldots, X_{n-1}\right) .
$$

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots and let τ be a stopping time with respect to $X_{0}=M_{0}, X_{1}, X_{2}, \ldots$. Then, the stopped process $M_{\min (0, \tau)}, M_{\min (1, \tau)}, \ldots$ is also a martingale with respect to X_{1}, X_{2}, \ldots.

$$
\tilde{M}_{n}=M_{\min (n, \tau)}= \begin{cases}M_{\tau}: & \tau \geqslant n \\ M_{n}: & n<\tau\end{cases}
$$

Stopped martingales are martingales
idea: stopped mig. is the mig. transform of M_{0}, M_{1}, \ldots by a predictable sequence.

- To see this, note that

$$
\tilde{M}_{n}=M_{\min (n, \tau)}={\overline{M_{n} \mathbb{1}_{\tau \geq n}}}+M_{\tau} \mathbb{1}_{\tau \leq n-1}
$$

wits that RHS is a martingale wansform

$$
L=M_{0}+A_{1}\left(M_{1}-M_{0}\right)+\ldots+A_{n}\left(M_{n}-M_{n-1}\right)
$$

where A_{1}, A_{2}, \ldots is a predictable sequence.

$$
A_{k}=g_{k-1}\left(M_{0}, x_{1}, \ldots, x_{k-1}\right)
$$

$$
\underline{\operatorname{claim}}: \quad A_{k}=\frac{11}{[\tau \geq k]}(=1-11[z \leq k-1])
$$

WORKS.

Stopped martingales are martingales

- To see this, note that

$$
\begin{aligned}
& M_{\min (n, \tau)}=M_{n} \mathbb{1}_{\tau \geq n}+M_{\tau} \mathbb{1}_{\tau \leq n-1} \\
&=M_{0}+\sum_{k=1}^{n} \tilde{\mathbb{1}_{\tau \geq k}} \cdot\left(M_{k}-M_{k-1}\right) . \\
& \frac{\tau=3}{M_{\operatorname{mir}}(4, \tau)}=M_{0}+\left(M_{1}-M_{0}\right)+\left(M_{1}-M_{1}\right) \\
&+\left(M_{3}-M_{2}\right)=M_{3}=\overline{M_{\tau}} . \\
&+\frac{1_{\tau \geq 4}}{0}\left(M_{4}-M_{9}\right) .
\end{aligned}
$$

Stopped martingales are martingales

- To see this, note that

$$
\begin{aligned}
M_{\min (n, \tau)} & =M_{n} \mathbb{1}_{\tau \geq n}+M_{\tau} \mathbb{1}_{\tau \leq n-1} \\
& =M_{0}+\sum_{k=1}^{n} \mathbb{1}_{\tau \geq k} \cdot\left(M_{k}-M_{k-1}\right) .
\end{aligned}
$$

- Since $\mathbb{1}_{\tau \geq k}=g_{k-1}\left(X_{0}, \ldots, X_{k-1}\right)$, it follows that

$$
\widetilde{M}_{n}=M_{\min (n, \tau)}
$$

is the martingale transform of M_{0}, M_{1}, \ldots by the predictable sequence $A_{k}=\mathbb{1}_{\tau \geq k}$,

Stopped martingales are martingales

- To see this, note that

$$
\begin{aligned}
M_{\min (n, \tau)} & =M_{n} \mathbb{1}_{\tau \geq n}+M_{\tau} \mathbb{1}_{\tau \leq n-1} \\
& =M_{0}+\sum_{k=1}^{n} \mathbb{1}_{\tau \geq k} \cdot\left(M_{k}-M_{k-1}\right) .
\end{aligned}
$$

- Since $\mathbb{1}_{\tau \geq k}=g_{k-1}\left(X_{0}, \ldots, X_{k-1}\right)$, it follows that

$$
\widetilde{M}_{n}=M_{\min (n, \tau)}
$$

is the martingale transform of M_{0}, M_{1}, \ldots by the predictable sequence $A_{k}=\mathbb{1}_{\tau \geq k}$, and hence, is also a martingale.

Example: Gambler's ruin revisited

- Consider the simple symmetric random walk on the integers starting from 0 and with steps X_{1}, X_{2}, \ldots each X_{i} is independently
- Let $M_{0}=0$ and $M_{n}=X_{1}+\cdots+X_{n}$. (Recall: $M_{M_{n}}$ is org. wot

$$
\left.x_{1}, x_{2}, \ldots\right)
$$

Example: Gambler's ruin revisited

- Consider the simple symmetric random walk on the integers starting from 0 and with steps X_{1}, X_{2}, \ldots.
- Let $M_{0}=0$ and $M_{n}=X_{1}+\cdots+X_{n}$. Then, M_{n} is a martingale with respect to X_{1}, X_{2}, \ldots.

Example: Gambler's ruin revisited

- Consider the simple symmetric random walk on the integers starting from 0 and with steps X_{1}, X_{2}, \ldots.
- Let $M_{0}=0$ and $M_{n}=X_{1}+\cdots+X_{n}$. Then, M_{n} is a martingale with respect to X_{1}, X_{2}, \ldots
- Let τ denote the first time that the walk visits A or $-B$.

Example: Gambler's ruin revisited

- Consider the simple symmetric random walk on the integers starting from 0 and with steps X_{1}, X_{2}, \ldots.
- Let $M_{0}=0$ and $M_{n}=X_{1}+\cdots+X_{n}$. Then, M_{n} is a martingale with respect to X_{1}, X_{2}, \ldots
- Let τ denote the first time that the walk visits A or $-B$.
- In the first lecture, we saw that $\mathbb{E}[\tau]<\infty$ and that

$$
\mathbb{P}\left[M_{\tau}=A\right]=\frac{B}{A+B}
$$

$\left\{\begin{array}{c}\text { we proved this using } \\ \text { frost step analysis. }\end{array}\right\}$.

Example: Gambler's ruin revisited

- Consider the simple symmetric random walk on the integers starting from 0 and with steps X_{1}, X_{2}, \ldots.
- Let $M_{0}=0$ and $M_{n}=X_{1}+\cdots+X_{n}$. Then, M_{n} is a martingale with respect to X_{1}, X_{2}, \ldots
- Let τ denote the first time that the walk visits A or $-B$.
- In the first lecture, we saw that $\mathbb{E}[\tau]<\infty$ and that

$$
\mathbb{P}\left[M_{\tau}=A\right]=\frac{B}{A+B}
$$

- Here's another way to see this.

Example: Gambler's ruin revisited

- Consider the simple symmetric random walk on the integers starting from 0 and with steps X_{1}, X_{2}, \ldots.
- Let $M_{0}=0$ and $M_{n}=X_{1}+\cdots+X_{n}$. Then, M_{n} is a martingale with respect to X_{1}, X_{2}, \ldots
- Let τ denote the first time that the walk visits A or $-B$.
- In the first lecture, we saw that $\mathbb{E}[\tau]<\infty$ and that

$$
\mathbb{P}\left[M_{\tau}=A\right]=\frac{B}{A+B}
$$

- Here's another way to see this. Since $\widetilde{M}_{n}=M_{\min (n, \tau)}$ is a martingale, we must have

$$
\mathbb{E}\left[\widetilde{M}_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[\widetilde{M}_{n} \mid \widetilde{M}_{n-1}\right]\right]=\mathbb{E}\left[\widetilde{M}_{n-1}\right] .
$$

Example: Gambler's ruin revisited

- Therefore, by iteration,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

what we would like to show is that

$$
\mathbb{E}\left[M_{\tau}\right]=0
$$

since $\cong[\tau<\infty]=1$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} M M_{\min (n, z)}=M_{\tau} \\
\mathbb{E}\left[M_{\tau}\right]=\mathbb{E}=\left[\lim _{n \rightarrow \infty} M_{\min (n, \tau)}\right]
\end{gathered}
$$

$$
\begin{aligned}
&\left|M_{\min (n, \tau)}\right| \\
& \leq \max \{A, B\}
\end{aligned} \rightarrow \lim _{n \rightarrow \infty} \mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

"dominated conv. hm"

Example: Gambler's ruin revisited

- Therefore, by iteration,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

and since $\mathbb{P}[\tau<\infty]=1$ and $\left|\widetilde{M}_{n}\right| \leq \max (A, B)$, we can take the limit as $n \rightarrow \infty$

Example: Gambler's ruin revisited

- Therefore, by iteration,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

and since $\mathbb{P}[\tau<\infty]=1$ and $\left|\widetilde{M}_{n}\right| \leq \max (A, B)$, we can take the limit as $n \rightarrow \infty$ to get that

$$
\mathbb{E}\left[M_{\tau}\right]=0
$$

- how does this give you

$$
\begin{aligned}
& \mathbb{R}\left[M_{\tau}=A\right] \\
& \mathbb{I}\left[M_{\tau}\right]= \mathbb{E}\left[M_{\tau} \mid M_{\tau}=A\right] \mathbb{I}\left[M_{\tau}=A\right] \\
&+\mathbb{I E}\left[M_{2} \mid M_{\tau}=-B\right] \mathbb{I}\left[M_{\tau}=-B\right] \\
&= A \cdot \mathbb{P}\left[M_{\tau}=A\right]-\mathbb{B}\left[M_{\tau}=-B\right]
\end{aligned}
$$

Example: Gambler's ruin revisited

- Therefore, by iteration,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

and since $\mathbb{P}[\tau<\infty]=1$ and $\left|\widetilde{M}_{n}\right| \leq \max (A, B)$, we can take the limit as $n \rightarrow \infty$ to get that

$$
\mathbb{E}\left[M_{\tau}\right]=0
$$

- On the other hand, we have

$$
\mathbb{E}\left[M_{\tau}\right]=A \cdot \mathbb{P}\left[M_{\tau}=A\right]-B \cdot \mathbb{P}\left[M_{\tau}=-B\right]
$$

Example: Gambler's ruin revisited

- Therefore, by iteration,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

and since $\mathbb{P}[\tau<\infty]=1$ and $\left|\widetilde{M}_{n}\right| \leq \max (A, B)$, we can take the limit as $n \rightarrow \infty$ to get that

$$
\mathbb{E}\left[M_{\tau}\right]=0
$$

- On the other hand, we have

$$
\begin{aligned}
& 0=\mathbb{E}\left[M_{\tau}\right]=A \cdot \mathbb{P}\left[M_{\tau}=A\right]-B \cdot \mathbb{P}\left[M_{\tau}=-B\right] \\
&=(A+B) \cdot \mathbb{P}\left[M_{\tau}=A\right]-B \\
& \Rightarrow \mathbb{P}\left[M_{\tau}=A\right]=\frac{B}{A+B}
\end{aligned}
$$

Example: Gambler's ruin revisited

- Therefore, by iteration,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

and since $\mathbb{P}[\tau<\infty]=1$ and $\left|\widetilde{M}_{n}\right| \leq \max (A, B)$, we can take the limit as $n \rightarrow \infty$ to get that

$$
\mathbb{E}\left[M_{\tau}\right]=0
$$

- On the other hand, we have

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right] & =A \cdot \mathbb{P}\left[M_{\tau}=A\right]-B \cdot \mathbb{P}\left[M_{\tau}=-B\right] \\
& =(A+B) \cdot \mathbb{P}\left[M_{\tau}=A\right]-B .
\end{aligned}
$$

- Combining these two equations, we get that

$$
\mathbb{P}\left[M_{\tau}=A\right]=\frac{B}{A+B} .
$$

Example: Gambler's ruin revisited

- Therefore, by iteration,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0
$$

and since $\mathbb{P}[\tau<\infty]=1$ and $\left|\widetilde{M}_{n}\right| \leq \max (A, B)$, we can take the limit as $n \rightarrow \infty$ to get that

$$
\mathbb{E}\left[M_{\tau}\right]=0
$$

- On the other hand, we have

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right] & =A \cdot \mathbb{P}\left[M_{\tau}=A\right]-B \cdot \mathbb{P}\left[M_{\tau}=-B\right] \\
& =(A+B) \cdot \mathbb{P}\left[M_{\tau}=A\right]-B .
\end{aligned}
$$

- Combining these two equations, we get that

$$
\mathbb{P}\left[M_{\tau}=A\right]=\frac{B}{A+B} .
$$

- As an exercise, you can recover the result for the biased case by starting with the martingale $M_{n}=(q / p)^{X_{1}+\cdots+X_{n}}$.

Example: Gambler's ruin revisited

- We also saw that $\mathbb{E}[\tau]=A B$.

Example: Gambler's ruin revisited

- We also saw that $\mathbb{E}[\tau]=A B$.
- This can also be proved using a martingale argument.

Example: Gambler's ruin revisited

- We also saw that $\mathbb{E}[\tau]=A B$.
- This can also be proved using a martingale argument. Recall from last time that $M_{0}=0$ and for $n \geq 1$,
is a martingale. last home:

$$
M_{n}=\overline{\left(X_{1}+\cdots\right.}+\overline{\left.X_{n}\right)^{2}-n}
$$

$$
x_{i} \text { have } \mathbb{E}\left[x_{i}\right]=0
$$

$$
\operatorname{Var}\left(x_{i}\right)=\sigma^{2}
$$

$$
\left(x_{1}+\cdots+x_{n}\right)^{2}-n \sigma^{2}
$$

Example: Gambler's ruin revisited

- We also saw that $\mathbb{E}[\tau]=A B$.
- This can also be proved using a martingale argument. Recall from last time that $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n
$$

is a martingale.

- As before, we consider the stopped martingale and note that

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0 .
$$

Example: Gambler's ruin revisited

- We also saw that $\mathbb{E}[\tau]=A B$.
- This can also be proved using a martingale argument. Recall from last time that $M_{0}=0$ and for $n \geq 1$,

$$
M_{n}=\left(X_{1}+\cdots+X_{n}\right)^{2}-n
$$

is a martingale.

- As before, we consider the stopped martingale and note that

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=0 .
$$

- Using $\mathbb{E}[\tau]<\infty$, we can again take the limit as $n \rightarrow \infty$ to conclude that

$$
\mathbb{E}\left[M_{\tau}\right]=0 .
$$

Example: Gambler's ruin revisited

$$
\text { at } M_{\tau} \longrightarrow x_{1} \ldots+x_{\tau}=A
$$

- On the other hand,

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right]= & \mathbb{E}\left[M_{\tau} \mid\left(X_{1}+\cdots+X_{\tau}\right)=A\right] \cdot \mathbb{P}\left[X_{1}+\cdots+X_{\tau}=A\right]+ \\
& \mathbb{E}\left[M_{\tau} \mid\left(X_{1}+\cdots+X_{\tau}\right)=B\right] \cdot \mathbb{P}\left[X_{1}+\cdots+X_{\tau}=B\right] \\
= & \mathbb{E}\left[M_{2} \mid x_{1}+\cdots+X_{2}=A\right] \cdot \frac{B}{A+B} \\
& +\mathbb{E}\left[M_{\tau} \mid x_{1}+\cdots+X_{\tau}=-B\right] \cdot \frac{A}{A+B} . \\
M_{2}= & \left(X_{1}+\cdots+x_{\tau}\right)^{2}-\tau
\end{aligned}
$$

Example: Gambler's ruin revisited

- On the other hand,

$$
\begin{aligned}
& \mathbb{E}\left[M_{\tau}\right]=\mathbb{E}\left[M_{\tau} \mid\left(X_{1}+\cdots+X_{\tau}\right)=A\right] \cdot \mathbb{P}\left[X_{1}+\cdots+X_{\tau}=A\right]+ \\
& \mathbb{E}\left[M_{\tau} \mid\left(X_{1}+\cdots+X_{\tau}\right)=B\right] \cdot \mathbb{P}\left[X_{1}+\cdots+X_{\tau}=B\right] \\
& =A^{2} \cdot \frac{B}{A+B}+B^{2} \cdot \frac{A}{A+B}-\mathbb{E}[\tau] \\
& =0 \Leftrightarrow \\
& \| \equiv[\tau]=\overline{\overline{A B}} \frac{(A+B)}{(A+B)} \\
& \text { last home: } \quad M_{n}=e^{\lambda\left(x_{1}+\cdots+x_{n}\right)} \\
& \left(\overline{\mathbb{E}\left[e^{\lambda x_{i}}\right]}\right)^{n}
\end{aligned}
$$

Example: Gambler's ruin revisited

- On the other hand,

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right]= & \mathbb{E}\left[M_{\tau} \mid\left(X_{1}+\cdots+X_{\tau}\right)=A\right] \cdot \mathbb{P}\left[X_{1}+\cdots+X_{\tau}=A\right]+ \\
& \mathbb{E}\left[M_{\tau} \mid\left(X_{1}+\cdots+X_{\tau}\right)=B\right] \cdot \mathbb{P}\left[X_{1}+\cdots+X_{\tau}=B\right] \\
= & A^{2} \cdot \frac{B}{A+B}+B^{2} \cdot \frac{A}{A+B}-\mathbb{E}[\tau]
\end{aligned}
$$

- Setting the right hand side to 0 gives

$$
\mathbb{E}[\tau]=A B .
$$

Example: a card game

Consider the following card game.:

- There is a randomly shuffled deck of 52 cards, 26 of which are red, and 26 of which are black.

Example: a card game

Consider the following card game.:

- There is a randomly shuffled deck of 52 cards, 26 of which are red, and 26 of which are black.
- The dealer deals one card at a time, face up.

Example: a card game

Consider the following card game.:

- There is a randomly shuffled deck of 52 cards, 26 of which are red, and 26 of which are black.
- The dealer deals one card at a time, face up.
- You are allowed to interject at most once to say that the next card is red.

Example: a card game

Consider the following card game.:

- There is a randomly shuffled deck of 52 cards, 26 of which are red, and 26 of which are black.
- The dealer deals one card at a time, face up.
- You are allowed to interject at most once to say that the next card is red.
- If the next card is indeed red, then you win $\$ 1$. If the next card is black, you win nothing.

Example: a card game

Consider the following card game.:

- There is a randomly shuffled deck of 52 cards, 26 of which are red, and 26 of which are black.
- The dealer deals one card at a time, face up.
- You are allowed to interject at most once to say that the next card is red.
- If the next card is indeed red, then you win $\$ 1$. If the next card is black, you win nothing.
- What is the optimal expected payoff? What is a strategy achieving this payoff?

Example: a card game

- Formally, let the revealed cards be $X_{1}, X_{2}, \ldots, X_{52}$.

Example: a card game

- Formally, let the revealed cards be $X_{1}, X_{2}, \ldots, X_{52}$.
- Your goal is to come up with a stopping time τ with respect to $X_{0}=0, X_{1}, X_{2}, \ldots, X_{52}$ in order to maximize

$$
\underset{=}{\mathbb{E}}[(\underbrace{p\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right)}] \text {. }
$$

Example: a card game

- Formally, let the revealed cards be $X_{1}, X_{2}, \ldots, X_{52}$.
- Your goal is to come up with a stopping time τ with respect to $X_{0}=0, X_{1}, X_{2}, \ldots, X_{52}$ in order to maximize

$$
\mathbb{E}\left[\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]\right] .
$$

- If you set $\tau=0$ (i.e., you always guess that the first card is red), then clearly,

$$
\mathbb{E}\left[\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]\right]=\mathbb{P}\left[X_{1}=\operatorname{red}\right]=1 / 2 .
$$

Example: a card game

- Formally, let the revealed cards be $X_{1}, X_{2}, \ldots, X_{52}$.
- Your goal is to come up with a stopping time τ with respect to $X_{0}=0, X_{1}, X_{2}, \ldots, X_{52}$ in order to maximize

$$
\mathbb{E}\left[\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]\right] .
$$

- If you set $\tau=0$ (i.e., you always guess that the first card is red), then clearly,

$$
\mathbb{E}\left[\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]\right]=\mathbb{P}\left[X_{1}=\operatorname{red}\right]=1 / 2 .
$$

- Can you do better?

Example: a card game

- Formally, let the revealed cards be $X_{1}, X_{2}, \ldots, X_{52}$.
- Your goal is to come up with a stopping time τ with respect to $X_{0}=0, X_{1}, X_{2}, \ldots, X_{52}$ in order to maximize

$$
\mathbb{E}\left[\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]\right] .
$$

- If you set $\tau=0$ (i.e., you always guess that the first card is red), then clearly,

$$
\mathbb{E}\left[\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]\right]=\mathbb{P}\left[X_{1}=\operatorname{red}\right]=1 / 2 .
$$

- Can you do better? No!

Example: a card game

- Note that $\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]$.

Example: a card game

- Note that $\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]=\mathbb{P}\left[X_{52}=\right.$ red $\left.\mid X_{1}, \ldots, X_{\tau}\right]$.
- Therefore, our goal can be rephrased as trying to maximize

$$
\mathbb{E}\left[M_{\tau}\right]
$$

where $M_{0}=1 / 2$ and for $n \geq 1$,

$$
M_{n}=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n}\right] .
$$

Example: a card game

- Note that $\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]$.
- Therefore, our goal can be rephrased as trying to maximize

$$
\mathbb{E}\left[M_{\tau}\right]
$$

where $M_{0}=1 / 2$ and for $n \geq 1$,

$$
M_{n}=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n}\right]
$$

- Since

$$
\mathbb{E}[\underbrace{\mathbb{P}\left[X_{52}=\right.}_{M_{n}} \operatorname{red} \mid \overline{X_{1}, \ldots, x_{n-1}}, x_{n}] \mid x_{1}, \ldots, X_{n-1}]=\underbrace{\left.\stackrel{\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n-1}\right.}{ }\right]}_{M_{n-1}} .
$$

Example: a card game

- Note that $\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]$.
- Therefore, our goal can be rephrased as trying to maximize

$$
\mathbb{E}\left[M_{\tau}\right]
$$

where $M_{0}=1 / 2$ and for $n \geq 1$,

$$
M_{n}=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n}\right] .
$$

- Since

$$
\mathbb{E}\left[\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n}\right] \mid X_{1}, \ldots, X_{n-1}\right]=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n-1}\right],
$$

it follows that M_{n} is a martingale.

Example: a card game

- Note that $\mathbb{P}\left[X_{\tau+1}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{\tau}\right]$.
- Therefore, our goal can be rephrased as trying to maximize

$$
\mathbb{E}\left[M_{\tau}\right]
$$

where $M_{0}=1 / 2$ and for $n \geq 1$,

$$
M_{n}=\mathbb{P}[\underbrace{X_{52}}=\operatorname{red} \mid \underbrace{X_{1}, \ldots, X_{n}}] .
$$

- Since

$$
\mathbb{E}\left[M_{n} \mid M_{n-1}\right]=M_{n-1}
$$

$$
\mathbb{E}\left[\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n}\right] \mid X_{1}, \ldots, X_{n-1}\right]=\mathbb{P}\left[X_{52}=\operatorname{red} \mid X_{1}, \ldots, X_{n-1}\right]
$$

it follows that M_{n} is a martingale. This is an example of a Doob martingale.

Example: a card game

- Therefore, $M_{\min (n, \tau)}$ is also a martingale.

Example: a card game

- Therefore, $M_{\min (n, \tau)}$ is also a martingale.
- Since $\tau \leq 51$, it follows that

$$
\mathbb{E}\left[M_{\tau}\right]=\mathbb{E}\left[M_{\min (\tau, 51)}\right]
$$

Example: a card game

- Therefore, $M_{\min (n, \tau)}$ is also a martingale.
- Since $\tau \leq 51$, it follows that

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right] & =\mathbb{E}\left[M_{\min (\tau, 51)}\right] \\
& =\mathbb{E}\left[M_{\min (\tau, 0)}\right]
\end{aligned}
$$

Example: a card game

- Therefore, $M_{\min (n, \tau)}$ is also a martingale.
- Since $\tau \leq 51$, it follows that

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right] & =\mathbb{E}\left[M_{\min (\tau, 51)}\right] \\
& =\mathbb{E}\left[M_{\min (\tau, 0)}\right] \\
& =\mathbb{E}\left[M_{0}\right]
\end{aligned}
$$

Example: a card game

- Therefore, $M_{\min (n, \tau)}$ is also a martingale.
- Since $\tau \leq 51$, it follows that

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right] & =\mathbb{E}\left[M_{\min (\tau, 51)}\right] \\
& =\mathbb{E}\left[M_{\min (\tau, 0)}\right] \\
& =\mathbb{E}\left[M_{0}\right] \\
& =\mathbb{P}\left[X_{52}=\mathrm{red}\right]
\end{aligned}
$$

Example: a card game

- Therefore, $M_{\min (n, \tau)}$ is also a martingale.
- Since $\tau \leq 51$, it follows that

$$
\begin{aligned}
\mathbb{E}\left[M_{\tau}\right] & =\mathbb{E}\left[M_{\min (\tau, 51)}\right] \\
& =\mathbb{E}\left[M_{\min (\tau, 0)}\right] \\
& =\mathbb{E}\left[M_{0}\right] \\
& =\mathbb{P}\left[X_{52}=\mathrm{red}\right] \\
& =1 / 2 .
\end{aligned}
$$

$$
\begin{aligned}
& M_{n}=\mathbb{P}\left(x_{52}=\operatorname{red} \mid x_{1} \ldots x_{n}\right) \\
& M_{0}=\mathbb{P}\left(x_{s 2}=\operatorname{Red} \mid x_{0}\right)
\end{aligned}
$$

