STATS 217: Introduction to Stochastic Processes I

Lecture 28

Last time: stopped martingales are martingales

- Recall that a stopping time with respect to $X_{0}, X_{1}, X_{2}, \ldots$ is a random variable τ taking values in $\{0,1,2, \ldots\} \cup\{\infty\}$ if for all $0 \leq n$, the event $\{\tau \leq n\}$ is determined by X_{0}, \ldots, X_{n} i.e.,

$$
\mathbb{1}_{\tau \leq n}=f_{n}\left(X_{0}, \ldots, X_{n}\right) .
$$

- Let M_{0}, M_{1}, \ldots be a martingale with respect to X_{1}, X_{2}, \ldots and let τ be a stopping time with respect to $X_{0}=M_{0}, X_{1}, X_{2}, \ldots$. Then, the stopped process $M_{\min (0, \tau)}, M_{\min (1, \tau)}, \ldots$ is also a martingale with respect to X_{1}, X_{2}, \ldots
- This is called the optional stopping theorem.

Example: waiting time for patterns

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is $\mathbb{E}[\tau]$?
- On Homework 5 , you showed that $\mathbb{E}[\tau]=10$ using first step analysis. Now, we'll see a quicker way to do this using the optional stopping theorem.
- For this, imagine a table at a casino where a fair coin is tossed at every time step.
- At every time step, a new gambler joins the table and buys a chip for $\$ 1$.
- Initially, the gambler bets $\$ 1$ on the coin landing heads. If the gambler loses, she leaves with nothing. If she wins, she now has $\$ 2$ which she bets on the coin landing tails. If she loses, she leaves with nothing. If she wins, she now has $\$ 4$, which she bets on the coin landing heads. If she loses, she leaves with nothing. If she wins, she leaves with $\$ 8$.

Example: waiting time for patterns

- Let X_{1}, X_{2}, \ldots denote the outcomes of the coin tosses.
- Let $M_{0}=0$ and M_{n} denote the money the casino has after X_{n} has been revealed. Note that $M_{n}=f\left(X_{1}, \ldots, X_{n}\right)$.
- Moreover, since X_{n} is a fair coin, $\mathbb{E}\left[M_{n} \mid X_{1}, \ldots, X_{n-1}\right]=M_{n-1}$ so that M_{n} is a martingale.
- Let τ denote the first time that the pattern HTH is observed at the table. Then, τ is a stopping time with respect to X_{1}, X_{2}, \ldots so that by the optional stopping theorem, $M_{n}=M_{\min (n, \tau)}$ is a martingale as well.

Example: waiting time for patterns

- Therefore,

$$
\mathbb{E}\left[M_{\min (n, \tau)}\right]=\mathbb{E}\left[M_{0}\right]=0
$$

- Using $\mathbb{E}[\tau]<\infty$, we are able to take (and switch) limits to deduce that

$$
\mathbb{E}\left[M_{\tau}\right]=0 .
$$

- Let's compute $\mathbb{E}\left[M_{\tau}\right]$ in a different way. After X_{τ} has been revealed, the casino has lost $\$ 1$ to the gambler who entered at time τ and $\$ 1+\$ 2+\$ 3$ to the gambler who entered at time $\tau-2$. On the other hand, the casino made $\$ 1$ each from the gamblers who entered at times $1, \ldots, \tau-3$ and $\tau-1$.
- Therefore, $0=\mathbb{E}\left[M_{\tau}\right]=(\mathbb{E}[\tau]-2)-1-7$, so that $\mathbb{E}[\tau]=10$.

Example: waiting time for patterns

- Similarly, if τ denotes the waiting time for $H H H$, then the casino loses $\$ 1$ to the gambler who enters at time τ, $\$ 3$ to the gambler who enters at time $\tau-1$, and $\$ 7$ to the gambler who enters at time $\tau-2$.
- Moreover, the casino makes $\$ 1$ from the first $\tau-3$ gamblers.
- Therefore, the same argument gives

$$
(\mathbb{E}[\tau]-3)-1-3-7=0
$$

so that $\mathbb{E}[\tau]=14$.

Martingale convergence theorem

The martingale convergence theorem asserts that if $M_{n} \geq 0$ is a martingale, then there exists a random variable M_{∞} such that

$$
\lim _{n \rightarrow \infty} M_{n}=M_{\infty} \quad \text { (in an almost sure sense) }
$$

and

$$
\mathbb{E}\left[M_{\infty}\right] \leq \mathbb{E}\left[M_{0}\right]
$$

Martingale convergence theorem

- Note that the condition $M_{n} \geq 0$ cannot be dropped altogether (although it can be weakened). For instance, the simple, symmetric random walk on the integers is a martingale which does not converge to any M_{∞}.
- Also, even if $M_{n} \geq 0$ is a martingale, it is not necessarily true that

$$
\mathbb{E}\left[M_{\infty}\right]=\mathbb{E}\left[M_{0}\right] .
$$

- For example, consider the simple, symmetric random walk on the integers starting at 1 , and let τ be the first time that the walk visits 0 . Then, the stopped martingale $\widetilde{M}_{n}=M_{\min (n, \tau)}$ satisfies $\widetilde{M}_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \widetilde{M}_{n}=0$.

Example: branching processes

- Let $\left(Z_{n}\right)_{n \geq 0}$ be a branching process with $Z_{0}=1$ and offspring distribution ξ.
- Recall this means that

$$
Z_{n}=\sum_{i=1}^{Z_{n-1}} \xi_{i},
$$

where ξ_{i} are i.i.d. copies of ξ.

- Let $\mu=\mathbb{E}[\xi]>0$. We saw that

$$
M_{n}=Z_{n} / \mu^{n}
$$

is a martingale.

Example: branching processes

- Since M_{n} is a non-negative martingale, there exists a random variable M_{∞} such that

$$
\lim _{n \rightarrow \infty} M_{n}=M_{\infty}
$$

and $\mathbb{E}\left[M_{\infty}\right] \leq \mathbb{E}\left[M_{0}\right]=1$.

- When $\mu=1$, then $Z_{n}=M_{n}$ is a martingale. In this case, we saw that the probability of extinction is 1 (provided that $\mathbb{P}[\xi=1]<1$). Here's a martingale proof of this fact.
- Since Z_{n} is integer-valued and $Z_{n} \rightarrow M_{\infty}$, it must be the case that M_{∞} is also integer-valued.
- We claim $\mathbb{P}\left[M_{\infty}>0\right]=0$. Otherwise, there would exist some $k \geq 1$ such that $\mathbb{P}\left[M_{\infty}=k\right]>0$ and hence $\mathbb{P}\left[\exists N: Z_{n}=k \quad \forall n \geq N\right]>0$.
- But the last event has probability 0 if $\mathbb{P}[\xi=1]<1$.

Martingale convergence theorem

- Here's some intuition for the martingale convergence theorem. While $\lim _{n \rightarrow \infty} M_{n}$ need not exist, we can always talk about

$$
Y:=\liminf _{n \rightarrow \infty} M_{n}, \quad Z:=\limsup _{n \rightarrow \infty} M_{n} .
$$

- If $\lim _{n \rightarrow \infty} M_{n}$ does not exist in an almost sure sense, then we must have $\mathbb{P}(Y<Z)>0$, and hence, there must exist real numbers $0<a<b$ such that

$$
\mathbb{P}[Y<a<b<Z]>0
$$

- For this to happen, it must be the case that M_{n} crosses from below a to above b infinitely many times with positive probability.
- To bound this probability, suppose that $M_{0} \leq a$ and let τ be the first time that the martingale crosses b.

Martingale convergence theorem

- Since $\widetilde{M}_{n}=M_{\min (n, \tau)}$ is also a martingale, we have for all $n \geq 0$ that

$$
\mathbb{E}\left[\widetilde{M}_{n}\right]=\mathbb{E}\left[\widetilde{M}_{0}\right] \leq a .
$$

- Note that if $\tau \leq n$, then $\widetilde{M}_{n}=M_{\tau} \geq b$, so that

$$
\mathbb{E}\left[\widetilde{M}_{n}\right] \geq b \mathbb{P}[\tau \leq n] .
$$

- Hence, we get that

$$
\mathbb{P}[\tau \leq n] \leq a / b,
$$

and now we can take the limit on the left hand side to see that

$$
\mathbb{P}[\tau<\infty] \leq a / b .
$$

- Therefore, the probability of having k crossings is $\leq(a / b)^{k}$, and now we can take the limit $k \rightarrow \infty$.

