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Last time: stopped martingales are martingales

@ Recall that a stopping time with respect to Xp, X1, Xo,... is a random
variable 7 taking values in {0,1,2,...} U {oo} if for all 0 < n, the event
{7 < n} is determined by Xo, ..., X, i.e.,

Lrcn = fo(Xoy- -, Xn).

o Let My, My, ... be a martingale with respect to Xi, X5,... and let 7 be a

stopping time with respect to Xo = My, X1, Xo,.... Then, the stopped
process Min0,r), Mmin(1,7); - - - IS also a martingale with respect to
X1, Xo,. ...

@ This is called the optional stopping theorem.
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Example: waiting time for patterns

Suppose a fair coin is tossed repeatedly. Let T be the first time to get the
pattern HTH. What is E[7]?

@ On Homework 5, you showed that E[7] = 10 using first step analysis. Now,
we'll see a quicker way to do this using the optional stopping theorem.

@ For this, imagine a table at a casino where a fair coin is tossed at every time
step.

o At every time step, a new gambler joins the table and buys a chip for $1.

o Initially, the gambler bets $1 on the coin landing heads. If the gambler loses,
she leaves with nothing. If she wins, she now has $2 which she bets on the
coin landing tails. If she loses, she leaves with nothing. If she wins, she now
has $4, which she bets on the coin landing heads. If she loses, she leaves with
nothing. If she wins, she leaves with $8.
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Example: waiting time for patterns

@ Let Xi, Xy, ... denote the outcomes of the coin tosses.

o Let My =0 and M, denote the money the casino has after X, has been
revealed. Note that M, = f(Xy,..., X,).

@ Moreover, since X, is a fair coin, E[M, | X1,...,X,-1] = M,_1 so that M, is
a martingale.

@ Let 7 denote the first time that the pattern HTH is observed at the table.
Then, 7 is a stopping time with respect to Xi, Xa,... so that by the optional
stopping theorem, M, = Min(n,7) is @ martingale as well.
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Example: waiting time for patterns

@ Therefore,
]E[Mmin(n,T)] = IE[/\/,0] =0.

e Using E[7] < oo, we are able to take (and switch) limits to deduce that

E[M.] = 0.

@ Let's compute E[M,] in a different way. After X. has been revealed, the
casino has lost $1 to the gambler who entered at time 7 and $1 + $2 + $3 to
the gambler who entered at time 7 — 2. On the other hand, the casino made
$1 each from the gamblers who entered at times 1,...,7 —3 and 7 — 1.

@ Therefore, 0 = E[M,] = (E[r] —2) — 1 — 7, so that E[r] = 10.
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Example: waiting time for patterns

@ Similarly, if 7 denotes the waiting time for HHH, then the casino loses $1 to
the gambler who enters at time 7, $3 to the gambler who enters at time
7 —1, and $7 to the gambler who enters at time 7 — 2.

@ Moreover, the casino makes $1 from the first 7 — 3 gamblers.

@ Therefore, the same argument gives
(E[r]-3)-1-3-7=0

so that E[r] = 14.
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Martingale convergence theorem

The martingale convergence theorem asserts that if M,, > 0 is a martingale, then
there exists a random variable My, such that

lim M, = My (in an almost sure sense)
n—oo

and
E[My] < E[M].
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Martingale convergence theorem

@ Note that the condition M,, > 0 cannot be dropped altogether (although it
can be weakened). For instance, the simple, symmetric random walk on the
integers is a martingale which does not converge to any M.

@ Also, even if M, > 0 is a martingale, it is not necessarily true that
E[M.] = E[My].

@ For example, consider the simple, symmetric random walk on the integers
starting at 1, and let 7 be the first time that the walk visits 0. Then, the
stopped martingale M, = Myin(n,r) satisfies M, > 0 and lim,_,oc M, = 0.
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Example: branching processes

@ Let (Z,)n>0 be a branching process with Zy = 1 and offspring distribution &.
@ Recall this means that

Zh1
Zy = Z &is
i=1
where &; are i.i.d. copies of €.
o Let 4 =E[£] > 0. We saw that

M, = Z,/u"

is a martingale.
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Example: branching processes

@ Since M, is a non-negative martingale, there exists a random variable M,
such that
lim M, = M,
n—oo

and E[My] < E[M,] = 1.

® When p =1, then Z, = M, is a martingale. In this case, we saw that the
probability of extinction is 1 (provided that P[¢ = 1] < 1). Here's a
martingale proof of this fact.

@ Since Z, is integer-valued and Z, — M., it must be the case that M, is
also integer-valued.

e We claim P[M,, > 0] = 0. Otherwise, there would exist some k > 1 such
that P[M, = k] > 0 and hence P[AN : Z, =k V¥n> N] > 0.

@ But the last event has probability 0 if P[¢ = 1] < 1.
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Martingale convergence theorem

@ Here's some intuition for the martingale convergence theorem. While
lim,_ o M, need not exist, we can always talk about

Y :=liminfM,, Z:=IlimsupM,.

n—o0 n—so0o

o If lim,_ o M, does not exist in an almost sure sense, then we must have
P(Y < Z) >0, and hence, there must exist real numbers 0 < a < b such that

PlY <a<b< Z]>0.

@ For this to happen, it must be the case that M, crosses from below a to
above b infinitely many times with positive probability.

@ To bound this probability, suppose that My < a and let 7 be the first time
that the martingale crosses b.
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Martingale convergence theorem

e Since M, = Mhin(n,7) is also a martingale, we have for all n > 0 that

E[M,] = E[Mo] < a.

@ Note that if 7 < n, then l\7l,, = M, > b, so that

E[M,] > bP[r < n].

@ Hence, we get that
Pl < n] < a/b,

and now we can take the limit on the left hand side to see that

Pt < o0] < a/b.

o Therefore, the probability of having k crossings is < (a/b)¥, and now we can
take the limit kK — oco.
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