STATS 217: Introduction to Stochastic Processes I

Lecture 28

Last time: stopped martingales are martingales

Recall that a stopping time with respect to X₀, X₁, X₂,... is a random variable τ taking values in {0, 1, 2, ... } ∪ {∞} if for all 0 ≤ n, the event {τ ≤ n} is determined by X₀,...,X_n i.e.,

$$\mathbb{1}_{\tau\leq n}=f_n(X_0,\ldots,X_n).$$

• Let M_0, M_1, \ldots be a martingale with respect to X_1, X_2, \ldots and let τ be a stopping time with respect to $X_0 = M_0, X_1, X_2, \ldots$

Last time: stopped martingales are martingales

Recall that a stopping time with respect to X₀, X₁, X₂,... is a random variable τ taking values in {0, 1, 2, ... } ∪ {∞} if for all 0 ≤ n, the event {τ ≤ n} is determined by X₀,...,X_n i.e.,

$$\mathbb{1}_{\tau\leq n}=f_n(X_0,\ldots,X_n).$$

- Let M_0, M_1, \ldots be a martingale with respect to X_1, X_2, \ldots and let τ be a stopping time with respect to $X_0 = M_0, X_1, X_2, \ldots$. Then, the **stopped process** $M_{\min(0,\tau)}, M_{\min(1,\tau)}, \ldots$ is also a martingale with respect to X_1, X_2, \ldots .
- This is called the optional stopping theorem.

(rame due to Doob)

• Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern *HTH*. What is $\mathbb{E}[\tau]$? $\tau - 2 \qquad \tau - 1 \qquad \tau = 1$

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is E[τ]?
- On Homework 5, you showed that $\mathbb{E}[\tau] = 10$ using first step analysis.

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is E[τ]?
- On Homework 5, you showed that $\mathbb{E}[\tau] = 10$ using first step analysis. Now, we'll see a quicker way to do this using the optional stopping theorem.

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is E[τ]?
- On Homework 5, you showed that $\mathbb{E}[\tau] = 10$ using first step analysis. Now, we'll see a quicker way to do this using the optional stopping theorem.
- For this, imagine a table at a casino where a fair coin is tossed at every time step.

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is E[τ]?
- On Homework 5, you showed that $\mathbb{E}[\tau] = 10$ using first step analysis. Now, we'll see a quicker way to do this using the optional stopping theorem.
- For this, imagine a table at a casino where a fair coin is tossed at every time step.
- At every time step, a *new* gambler joins the table and buys a chip for \$1.

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is E[τ]?
- On Homework 5, you showed that $\mathbb{E}[\tau] = 10$ using first step analysis. Now, we'll see a quicker way to do this using the optional stopping theorem.
- For this, imagine a table at a casino where a fair coin is tossed at every time step.
- At every time step, a *new* gambler joins the table and buys a chip for \$1.
- Initially, the gambler bets \$1 on the coin landing heads. If the gambler loses, she leaves with nothing.

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is E[τ]?
- On Homework 5, you showed that $\mathbb{E}[\tau] = 10$ using first step analysis. Now, we'll see a quicker way to do this using the optional stopping theorem.
- For this, imagine a table at a casino where a fair coin is tossed at every time step.
- At every time step, a *new* gambler joins the table and buys a chip for \$1.
- Initially, the gambler bets \$1 on the coin landing heads. If the gambler loses, she leaves with nothing. If she wins, she now has \$2 which she bets on the coin landing tails. If she loses, she leaves with nothing.

- Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the pattern HTH. What is E[τ]?
- On Homework 5, you showed that $\mathbb{E}[\tau] = 10$ using first step analysis. Now, we'll see a quicker way to do this using the optional stopping theorem.
- For this, imagine a table at a casino where a fair coin is tossed at every time step.
- At every time step, a *new* gambler joins the table and buys a chip for \$1.
- Initially, the gambler bets \$1 on the coin landing heads. If the gambler loses, she leaves with nothing. If she wins, she now has \$2 which she bets on the coin landing tails. If she loses, she leaves with nothing. If she wins, she now has \$4, which she bets on the coin landing heads. If she loses, she leaves with nothing. If she wins, she leaves with nothing. If she wins, she leaves with \$4.

• Let X_1, X_2, \ldots denote the outcomes of the coin tosses.

- Let X_1, X_2, \ldots denote the outcomes of the coin tosses.
- Let $M_0 = 0$ and M_n denote the money the casino has after X_n has been revealed. Note that $M_n = f(X_1, \ldots, X_n)$.
 - · moreover:

$$\begin{split} & F\left[M_{n} \mid X_{1} \dots X_{n-1}\right] = 1^{n-1} \\ & & \\ &$$

- Let X_1, X_2, \ldots denote the outcomes of the coin tosses.
- Let $M_0 = 0$ and M_n denote the money the casino has after X_n has been revealed. Note that $M_n = f(X_1, \ldots, X_n)$.
- Moreover, since X_n is a fair coin, $\mathbb{E}[M_n \mid X_1, \dots, X_{n-1}] = M_{n-1}$ so that M_n is a martingale.

- Let X_1, X_2, \ldots denote the outcomes of the coin tosses.
- Let M₀ = 0 and M_n denote the money the casino has after X_n has been revealed. Note that M_n = f(X₁,...,X_n).
- Moreover, since X_n is a fair coin, $\mathbb{E}[M_n \mid X_1, \dots, X_{n-1}] = M_{n-1}$ so that M_n is a martingale.
- Let τ denote the first time that the pattern *HTH* is observed at the table.

- Let X_1, X_2, \ldots denote the outcomes of the coin tosses.
- Let M₀ = 0 and M_n denote the money the casino has after X_n has been revealed. Note that M_n = f(X₁,...,X_n).
- Moreover, since X_n is a fair coin, $\mathbb{E}[M_n \mid X_1, \dots, X_{n-1}] = M_{n-1}$ so that M_n is a martingale.
- Let τ denote the first time that the pattern *HTH* is observed at the table. Then, τ is a stopping time with respect to X_1, X_2, \ldots so that by the optional stopping theorem, $\widetilde{M}_n = M_{\min(n,\tau)}$ is a martingale as well.

• Therefore,

$$\mathbb{E}[M_{\min(n,\tau)}] = \mathbb{E}[M_0] = 0.$$

 $\bullet~$ Using $\mathbb{E}[\tau]<\infty,$ we are able to take (and switch) limits to deduce that

$$\mathbb{E}[M_{\tau}] = 0.$$

• We want to compute $\mathbb{E}[M_{\tau}]$ in a diff. way
(hopefully involving $\mathbb{E}[\mathbb{Z}]$).

$$\mathbb{E}[T_{\tau}] = (T - 3 + 1)$$

$$\mathbb{E}[T_{\tau}] = (T - 3 + 1)$$

$$\mathbb{E}[T_{\tau}] = (T - 3 + 1)$$

$$\mathbb{E}[T_{\tau}] = T - 10$$

• Therefore,

$$\mathbb{E}[M_{\min(n,\tau)}] = \mathbb{E}[M_0] = 0.$$

 $\bullet~$ Using $\mathbb{E}[\tau]<\infty,$ we are able to take (and switch) limits to deduce that

 $\mathbb{E}[M_{\tau}]=0.$

• Let's compute $\mathbb{E}[M_{\tau}]$ in a different way.

• Therefore,

$$\mathbb{E}[M_{\min(n,\tau)}] = \mathbb{E}[M_0] = 0.$$

 $\bullet~$ Using $\mathbb{E}[\tau]<\infty,$ we are able to take (and switch) limits to deduce that

 $\mathbb{E}[M_{\tau}]=0.$

Let's compute E[M_τ] in a different way. After X_τ has been revealed, the casino has lost \$1 to the gambler who entered at time τ and \$1 + \$2 + \$3 to the gambler who entered at time τ − 2.

• Therefore,

$$\mathbb{E}[M_{\min(n,\tau)}] = \mathbb{E}[M_0] = 0.$$

 $\bullet~$ Using $\mathbb{E}[\tau]<\infty,$ we are able to take (and switch) limits to deduce that

 $\mathbb{E}[M_{\tau}]=0.$

• Let's compute $\mathbb{E}[M_{\tau}]$ in a different way. After X_{τ} has been revealed, the casino has lost \$1 to the gambler who entered at time τ and 1 + 2 + 3 to the gambler who entered at time $\tau - 2$. On the other hand, the casino made \$1 each from the gamblers who entered at times $1, \ldots, \tau - 3$ and $\tau - 1$.

• Therefore,

$$\mathbb{E}[M_{\min(n,\tau)}] = \mathbb{E}[M_0] = 0.$$

 $\bullet~$ Using $\mathbb{E}[\tau]<\infty,$ we are able to take (and switch) limits to deduce that

 $\mathbb{E}[M_{\tau}]=0.$

• Let's compute $\mathbb{E}[M_{\tau}]$ in a different way. After X_{τ} has been revealed, the casino has lost \$1 to the gambler who entered at time τ and 1 + 2 + 3 to the gambler who entered at time $\tau - 2$. On the other hand, the casino made \$1 each from the gamblers who entered at times $1, \ldots, \tau - 3$ and $\tau - 1$.

• Therefore,
$$0 = \mathbb{E}[M_{\tau}] = (\mathbb{E}[\tau] - 2) - 1 - 7$$
,

• Therefore,

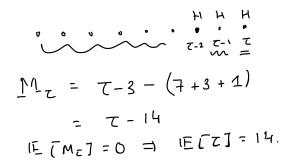
$$\mathbb{E}[M_{\min(n,\tau)}] = \mathbb{E}[M_0] = 0.$$

 $\bullet~$ Using $\mathbb{E}[\tau]<\infty,$ we are able to take (and switch) limits to deduce that

 $\mathbb{E}[M_{\tau}]=0.$

- Let's compute $\mathbb{E}[M_{\tau}]$ in a different way. After X_{τ} has been revealed, the casino has lost \$1 to the gambler who entered at time τ and 1 + 2 + 3 to the gambler who entered at time $\tau 2$. On the other hand, the casino made \$1 each from the gamblers who entered at times $1, \ldots, \tau 3$ and $\tau 1$.
- Therefore, $0 = \mathbb{E}[M_{\tau}] = (\mathbb{E}[\tau] 2) 1 7$, so that $\mathbb{E}[\tau] = 10$.

• Similarly, if τ denotes the waiting time for HHH then the casino loses \$1 to the gambler who enters at time τ , \$3 to the gambler who enters at time $\tau - 1$, and \$7 to the gambler who enters at time $\tau - 2$.



- Similarly, if τ denotes the waiting time for *HHH*, then the casino loses \$1 to the gambler who enters at time τ , \$3 to the gambler who enters at time $\tau 1$, and \$7 to the gambler who enters at time $\tau 2$.
- Moreover, the casino makes \$1 from the first $\tau 3$ gamblers.

- Similarly, if τ denotes the waiting time for *HHH*, then the casino loses \$1 to the gambler who enters at time τ , \$3 to the gambler who enters at time $\tau 1$, and \$7 to the gambler who enters at time $\tau 2$.
- Moreover, the casino makes \$1 from the first au-3 gamblers.
- Therefore, the same argument gives

$$(\mathbb{E}[\tau] - 3) - 1 - 3 - 7 = 0$$

so that $\mathbb{E}[\tau] = 14$.

The martingale convergence theorem asserts that if
$$M_n \ge 0$$
 is a martingale, then
there exists a random variable M_∞ such that
$$\lim_{n \to \infty} M_n = M_\infty \quad (\text{in an almost sure sense})$$
and
$$\boxed{\mathbb{E}[M_\infty] \bigoplus \mathbb{E}[M_0]} \quad \bigcap_{\substack{n \to \infty \\ m \to \infty}} \prod_{\substack{n \to \infty \\ m \to \infty}} M_n (\omega) = M_\omega(\omega)]$$
$$\lim_{\substack{n \to \infty \\ m \to \infty}} M_n (\omega) = M_\omega(\omega)]$$
$$\lim_{\substack{n \to \infty \\ m \to \infty}} M_n (\omega) = M_\omega(\omega)]$$

• Note that the condition $M_n \ge 0$ cannot be dropped altogether (although it can be weakened). For instance, the simple, symmetric random walk on the integers is a martingale which does not converge to any M_{∞} .

- Note that the condition $M_n \ge 0$ cannot be dropped altogether (although it can be weakened). For instance, the simple, symmetric random walk on the integers is a martingale which does not converge to any M_{∞} .
- Also, even if $M_n \ge 0$ is a martingale, it is not necessarily true that

$$\mathbb{E}[M_{\infty}] = \mathbb{E}[M_0].$$

• For example, consider the simple, symmetric random walk on the integers starting at 1, and let τ be the first time that the walk visits 0.

- Note that the condition $M_n \ge 0$ cannot be dropped altogether (although it can be weakened). For instance, the simple, symmetric random walk on the integers is a martingale which does not converge to any M_{∞} .
- Also, even if $M_n \ge 0$ is a martingale, it is not necessarily true that

$$\mathbb{E}[M_{\infty}] = \mathbb{E}[M_0]. \qquad \xrightarrow{\mathbf{0}}$$

• For example, consider the simple, symmetric random walk on the integers starting at 1, and let τ be the first time that the walk visits 0. Then, the stopped martingale $\widetilde{M}_n = M_{\min(n,\tau)}$ satisfies $\widetilde{M}_n \ge 0$ and $\lim_{n\to\infty} \widetilde{M}_n = 0$.

Let (Z_n)_{n≥0} be a branching process with Z₀ = 1 and offspring distribution ξ.
Recall this means that

$$Z_n = \sum_{i=1}^{Z_{n-1}} \xi_i,$$

where ξ_i are i.i.d. copies of ξ .

Let (Z_n)_{n≥0} be a branching process with Z₀ = 1 and offspring distribution ξ.
Recall this means that

$$Z_n = \sum_{i=1}^{Z_{n-1}} \xi_i,$$

where ξ_i are i.i.d. copies of ξ .

• Let $\mu = \mathbb{E}[\xi] > 0$. We saw that

$$M_n = Z_n/\mu^n$$

is a martingale.

• Since M_n is a non-negative martingale, there exists a random variable M_∞ such that

$$\lim_{n\to\infty}M_n=M_\infty$$

and $\mathbb{E}[M_{\infty}] \leq \mathbb{E}[M_0] = 1.$ $\bigvee (\underbrace{M < 1}_{W = 1})^{\circ}$ and if $\underbrace{\mathbb{P}\left[[\xi = 1] < 1}_{=}\right] \approx \mathbb{P}\left[extinction\right]_{= 1.}$ $\mu > 1.$

• Since M_n is a non-negative martingale, there exists a random variable M_∞ such that

$$\lim_{n\to\infty}M_n=M_\infty$$

and $\mathbb{E}[M_{\infty}] \leq \mathbb{E}[M_0] = 1$.

• When $\mu = 1$, then $Z_n = M_n$ is a martingale. In this case, we saw that the probability of extinction is 1 (provided that $\mathbb{P}[\xi = 1] < 1$). Here's a martingale proof of this fact.

50 J Mu s.t. Zn -> Mu must also a since Zn is integer valued, Mu must also k int. valued.

• Since M_n is a non-negative martingale, there exists a random variable M_∞ such that

$$\lim_{n\to\infty}M_n=M_\infty$$

and $\mathbb{E}[M_{\infty}] \leq \mathbb{E}[M_0] = 1$.

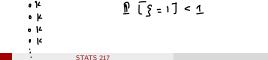
- When $\mu = 1$, then $Z_n = M_n$ is a martingale. In this case, we saw that the probability of extinction is 1 (provided that $\mathbb{P}[\xi = 1] < 1$). Here's a martingale proof of this fact.
- Since Z_n is integer-valued and $Z_n \to M_\infty$, it must be the case that M_∞ is also integer-valued.

• Since M_n is a non-negative martingale, there exists a random variable M_{∞} such that

$$\lim_{n\to\infty}M_n=M_\infty$$

and $\mathbb{E}[M_{\infty}] \leq \mathbb{E}[M_0] = 1$.

- When $\mu = 1$, then $Z_n = M_n$ is a martingale. In this case, we saw that the probability of extinction is 1 (provided that $\mathbb{P}[\xi = 1] < 1$). Here's a martingale proof of this fact.
- Since Z_n is integer-valued and $Z_n \to M_{\infty}$, it must be the case that M_{∞} is also integer-valued.
- We claim $\mathbb{P}[M_{\infty} > 0] = 0$. Otherwise, there would exist some $k \ge 1$ such that $\mathbb{P}[M_{\infty} = k] > 0$ and hence $\mathbb{P}[\exists N : Z_n = k \quad \forall n \ge N] > 0$.



• Since M_n is a non-negative martingale, there exists a random variable M_∞ such that

$$\lim_{n\to\infty}M_n=M_\infty$$

and $\mathbb{E}[M_{\infty}] \leq \mathbb{E}[M_0] = 1$.

- When $\mu = 1$, then $Z_n = M_n$ is a martingale. In this case, we saw that the probability of extinction is 1 (provided that $\mathbb{P}[\xi = 1] < 1$). Here's a martingale proof of this fact.
- Since Z_n is integer-valued and $Z_n \to M_\infty$, it must be the case that M_∞ is also integer-valued.
- We claim $\mathbb{P}[M_{\infty} > 0] = 0$. Otherwise, there would exist some $k \ge 1$ such that $\mathbb{P}[M_{\infty} = k] > 0$ and hence $\mathbb{P}[\exists N : Z_n = k \quad \forall n \ge N] > 0$.
- But the last event has probability 0 if $\mathbb{P}[\xi = 1] < 1$.

• Here's some intuition for the martingale convergence theorem. While $\lim_{n\to\infty} M_n$ need not exist, we can always talk about

$$Y:=\liminf_{n\to\infty}M_n,\quad Z:=\limsup_{n\to\infty}M_n.$$

• Here's some intuition for the martingale convergence theorem. While $\lim_{n\to\infty} M_n$ need not exist, we can always talk about

$$Y := \liminf_{n \to \infty} M_n, \quad Z := \limsup_{n \to \infty} M_n.$$

• If $\lim_{n\to\infty} M_n$ does not exist in an almost sure sense, then we must have $\mathbb{P}(Y < Z) > 0$, and hence, there must exist real numbers 0 < a < b such that

$$\mathbb{P}[Y < a < b < Z] > 0.$$

• Here's some intuition for the martingale convergence theorem. While $\lim_{n\to\infty} M_n$ need not exist, we can always talk about

$$Y := \liminf_{n \to \infty} M_n, \quad Z := \limsup_{n \to \infty} M_n.$$

• If $\lim_{n\to\infty} M_n$ does not exist in an almost sure sense, then we must have $\mathbb{P}(Y < Z) > 0$, and hence, there must exist real numbers 0 < a < b such that

$$\mathbb{P}[Y < a < b < Z] > 0.$$

• For this to happen, it must be the case that M_n crosses from below *a* to above *b* infinitely many times with positive probability.

• Here's some intuition for the martingale convergence theorem. While $\lim_{n\to\infty} M_n$ need not exist, we can always talk about

$$Y := \liminf_{n \to \infty} M_n, \quad Z := \limsup_{n \to \infty} M_n.$$

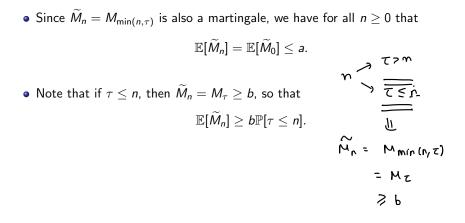
• If $\lim_{n\to\infty} M_n$ does not exist in an almost sure sense, then we must have $\mathbb{P}(Y < Z) > 0$, and hence, there must exist real numbers 0 < a < b such that

$$\mathbb{P}[Y < a < b < Z] > 0.$$

- For this to happen, it must be the case that M_n crosses from below *a* to above *b* infinitely many times with positive probability.
- To bound this probability, suppose that $M_0 \leq a$ and let τ be the first time that the martingale crosses b.

• Since $\widetilde{M}_n = M_{\min(n,\tau)}$ is also a martingale, we have for all $n \ge 0$ that

$$\mathbb{E}[\widetilde{M}_n] = \mathbb{E}[\widetilde{M}_0] \leq a.$$



• Since $\widetilde{M}_n = M_{\min(n,\tau)}$ is also a martingale, we have for all $n \ge 0$ that $\mathbb{E}[\widetilde{M}_n] = \mathbb{E}[\widetilde{M}_0] \le a.$

• Note that if
$$\tau \leq n$$
, then $\widetilde{M}_n = M_\tau \geq b$, so that $\mathbb{E}[\widetilde{M}_n] \geq b\mathbb{P}[\tau \leq n].$

• Hence, we get that

$$\mathbb{P}[\tau \leq n] \leq a/b,$$

and now we can take the limit on the left hand side to see that

$$\mathbb{P}[au < \infty] \leq \mathsf{a}/\mathsf{b}.$$
 < 1 (a < b)

• Since $\widetilde{M}_n = M_{\min(n,\tau)}$ is also a martingale, we have for all $n \ge 0$ that $\mathbb{E}[\widetilde{M}_n] = \mathbb{E}[\widetilde{M}_0] \le a.$

• Note that if
$$\tau \leq n$$
, then $\widetilde{M}_n = M_\tau \geq b$, so that $\mathbb{E}[\widetilde{M}_n] \geq b\mathbb{P}[\tau \leq n].$

• Hence, we get that

 $\mathbb{P}[\tau \leq n] \leq a/b,$

and now we can take the limit on the left hand side to see that

$$\mathbb{P}[au < \infty] \le a/b.$$

• Therefore, the probability of having k crossings is $\leq (a/b)^k$, and now we can take the limit $k \to \infty$.