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Last time: stopped martingales are martingales

Recall that a stopping time with respect to X0,X1,X2, . . . is a random
variable τ taking values in {0, 1, 2, . . . } ∪ {∞} if for all 0 ≤ n, the event
{τ ≤ n} is determined by X0, . . . ,Xn i.e.,

1τ≤n = fn(X0, . . . ,Xn).

Let M0,M1, . . . be a martingale with respect to X1,X2, . . . and let τ be a
stopping time with respect to X0 = M0,X1,X2, . . . .

Then, the stopped
process Mmin(0,τ),Mmin(1,τ), . . . is also a martingale with respect to
X1,X2, . . . .

This is called the optional stopping theorem.
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Example: waiting time for patterns

Suppose a fair coin is tossed repeatedly. Let τ be the first time to get the
pattern HTH. What is E[τ ]?

On Homework 5, you showed that E[τ ] = 10 using first step analysis. Now,
we’ll see a quicker way to do this using the optional stopping theorem.

For this, imagine a table at a casino where a fair coin is tossed at every time
step.

At every time step, a new gambler joins the table and buys a chip for $1.

Initially, the gambler bets $1 on the coin landing heads. If the gambler loses,
she leaves with nothing. If she wins, she now has $2 which she bets on the
coin landing tails. If she loses, she leaves with nothing. If she wins, she now
has $4, which she bets on the coin landing heads. If she loses, she leaves with
nothing. If she wins, she leaves with $8.
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Example: waiting time for patterns

Let X1,X2, . . . denote the outcomes of the coin tosses.

Let M0 = 0 and Mn denote the money the casino has after Xn has been
revealed. Note that Mn = f (X1, . . . ,Xn).

Moreover, since Xn is a fair coin, E[Mn | X1, . . . ,Xn−1] = Mn−1 so that Mn is
a martingale.

Let τ denote the first time that the pattern HTH is observed at the table.
Then, τ is a stopping time with respect to X1,X2, . . . so that by the optional
stopping theorem, M̃n = Mmin(n,τ) is a martingale as well.

Lecture 28 STATS 217 4 / 12



Example: waiting time for patterns

Let X1,X2, . . . denote the outcomes of the coin tosses.

Let M0 = 0 and Mn denote the money the casino has after Xn has been
revealed. Note that Mn = f (X1, . . . ,Xn).

Moreover, since Xn is a fair coin, E[Mn | X1, . . . ,Xn−1] = Mn−1 so that Mn is
a martingale.

Let τ denote the first time that the pattern HTH is observed at the table.
Then, τ is a stopping time with respect to X1,X2, . . . so that by the optional
stopping theorem, M̃n = Mmin(n,τ) is a martingale as well.

Lecture 28 STATS 217 4 / 12



Example: waiting time for patterns

Let X1,X2, . . . denote the outcomes of the coin tosses.

Let M0 = 0 and Mn denote the money the casino has after Xn has been
revealed. Note that Mn = f (X1, . . . ,Xn).

Moreover, since Xn is a fair coin, E[Mn | X1, . . . ,Xn−1] = Mn−1 so that Mn is
a martingale.

Let τ denote the first time that the pattern HTH is observed at the table.
Then, τ is a stopping time with respect to X1,X2, . . . so that by the optional
stopping theorem, M̃n = Mmin(n,τ) is a martingale as well.

Lecture 28 STATS 217 4 / 12



Example: waiting time for patterns

Let X1,X2, . . . denote the outcomes of the coin tosses.

Let M0 = 0 and Mn denote the money the casino has after Xn has been
revealed. Note that Mn = f (X1, . . . ,Xn).

Moreover, since Xn is a fair coin, E[Mn | X1, . . . ,Xn−1] = Mn−1 so that Mn is
a martingale.

Let τ denote the first time that the pattern HTH is observed at the table.

Then, τ is a stopping time with respect to X1,X2, . . . so that by the optional
stopping theorem, M̃n = Mmin(n,τ) is a martingale as well.

Lecture 28 STATS 217 4 / 12



Example: waiting time for patterns

Let X1,X2, . . . denote the outcomes of the coin tosses.

Let M0 = 0 and Mn denote the money the casino has after Xn has been
revealed. Note that Mn = f (X1, . . . ,Xn).

Moreover, since Xn is a fair coin, E[Mn | X1, . . . ,Xn−1] = Mn−1 so that Mn is
a martingale.

Let τ denote the first time that the pattern HTH is observed at the table.
Then, τ is a stopping time with respect to X1,X2, . . . so that by the optional
stopping theorem, M̃n = Mmin(n,τ) is a martingale as well.

Lecture 28 STATS 217 4 / 12



Example: waiting time for patterns

Therefore,
E[Mmin(n,τ)] = E[M0] = 0.

Using E[τ ] <∞, we are able to take (and switch) limits to deduce that

E[Mτ ] = 0.

Let’s compute E[Mτ ] in a different way. After Xτ has been revealed, the
casino has lost $1 to the gambler who entered at time τ and $1 + $2 + $3 to
the gambler who entered at time τ − 2. On the other hand, the casino made
$1 each from the gamblers who entered at times 1, . . . , τ − 3 and τ − 1.

Therefore, 0 = E[Mτ ] = (E[τ ]− 2)− 1− 7, so that E[τ ] = 10.
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Example: waiting time for patterns

Similarly, if τ denotes the waiting time for HHH, then the casino loses $1 to
the gambler who enters at time τ , $3 to the gambler who enters at time
τ − 1, and $7 to the gambler who enters at time τ − 2.

Moreover, the casino makes $1 from the first τ − 3 gamblers.

Therefore, the same argument gives

(E[τ ]− 3)− 1− 3− 7 = 0

so that E[τ ] = 14.
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Martingale convergence theorem

The martingale convergence theorem asserts that if Mn ≥ 0 is a martingale, then
there exists a random variable M∞ such that

lim
n→∞

Mn = M∞ (in an almost sure sense)

and
E[M∞] ≤ E[M0].
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Martingale convergence theorem

Note that the condition Mn ≥ 0 cannot be dropped altogether (although it
can be weakened). For instance, the simple, symmetric random walk on the
integers is a martingale which does not converge to any M∞.

Also, even if Mn ≥ 0 is a martingale, it is not necessarily true that

E[M∞] = E[M0].

For example, consider the simple, symmetric random walk on the integers
starting at 1, and let τ be the first time that the walk visits 0. Then, the
stopped martingale M̃n = Mmin(n,τ) satisfies M̃n ≥ 0 and limn→∞ M̃n = 0.
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Example: branching processes

Let (Zn)n≥0 be a branching process with Z0 = 1 and offspring distribution ξ.

Recall this means that

Zn =

Zn−1∑
i=1

ξi ,

where ξi are i.i.d. copies of ξ.

Let µ = E[ξ] > 0. We saw that

Mn = Zn/µ
n

is a martingale.
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Example: branching processes

Since Mn is a non-negative martingale, there exists a random variable M∞
such that

lim
n→∞

Mn = M∞

and E[M∞] ≤ E[M0] = 1.

When µ = 1, then Zn = Mn is a martingale. In this case, we saw that the
probability of extinction is 1 (provided that P[ξ = 1] < 1). Here’s a
martingale proof of this fact.

Since Zn is integer-valued and Zn → M∞, it must be the case that M∞ is
also integer-valued.

We claim P[M∞ > 0] = 0. Otherwise, there would exist some k ≥ 1 such
that P[M∞ = k] > 0 and hence P[∃N : Zn = k ∀n ≥ N] > 0.

But the last event has probability 0 if P[ξ = 1] < 1.
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Martingale convergence theorem

Here’s some intuition for the martingale convergence theorem. While
limn→∞Mn need not exist, we can always talk about

Y := lim inf
n→∞

Mn, Z := lim sup
n→∞

Mn.

If limn→∞Mn does not exist in an almost sure sense, then we must have
P(Y < Z ) > 0, and hence, there must exist real numbers 0 < a < b such that

P[Y < a < b < Z ] > 0.

For this to happen, it must be the case that Mn crosses from below a to
above b infinitely many times with positive probability.

To bound this probability, suppose that M0 ≤ a and let τ be the first time
that the martingale crosses b.
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Martingale convergence theorem

Since M̃n = Mmin(n,τ) is also a martingale, we have for all n ≥ 0 that

E[M̃n] = E[M̃0] ≤ a.

Note that if τ ≤ n, then M̃n = Mτ ≥ b, so that

E[M̃n] ≥ bP[τ ≤ n].

Hence, we get that
P[τ ≤ n] ≤ a/b,

and now we can take the limit on the left hand side to see that

P[τ <∞] ≤ a/b.

Therefore, the probability of having k crossings is ≤ (a/b)k , and now we can
take the limit k →∞.
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and now we can take the limit on the left hand side to see that

P[τ <∞] ≤ a/b.

Therefore, the probability of having k crossings is ≤ (a/b)k , and now we can
take the limit k →∞.

Lecture 28 STATS 217 12 / 12



Martingale convergence theorem

Since M̃n = Mmin(n,τ) is also a martingale, we have for all n ≥ 0 that

E[M̃n] = E[M̃0] ≤ a.

Note that if τ ≤ n, then M̃n = Mτ ≥ b, so that

E[M̃n] ≥ bP[τ ≤ n].

Hence, we get that
P[τ ≤ n] ≤ a/b,

and now we can take the limit on the left hand side to see that

P[τ <∞] ≤ a/b.

Therefore, the probability of having k crossings is ≤ (a/b)k , and now we can
take the limit k →∞.

Lecture 28 STATS 217 12 / 12



Martingale convergence theorem

Since M̃n = Mmin(n,τ) is also a martingale, we have for all n ≥ 0 that

E[M̃n] = E[M̃0] ≤ a.

Note that if τ ≤ n, then M̃n = Mτ ≥ b, so that

E[M̃n] ≥ bP[τ ≤ n].

Hence, we get that
P[τ ≤ n] ≤ a/b,

and now we can take the limit on the left hand side to see that

P[τ <∞] ≤ a/b.

Therefore, the probability of having k crossings is ≤ (a/b)k , and now we can
take the limit k →∞.

Lecture 28 STATS 217 12 / 12


