STATS 217: Introduction to Stochastic Processes I

Lecture 2

Recall from last time

- Given integers $A>0, B>0$, let

$$
\tau:=\min \left\{n \geq 0: S_{n}=A \text { or } S_{n}=-B\right\} .
$$

- For $-B \leq k \leq A$, define

$$
g(k):=\underbrace{\mathbb{E}\left[\tau \mid S_{0}=k\right]} .
$$

- Clearly, $g(-B)=0, g(A)=0$.

Recall from last time

- Given integers $A>0, B>0$, let

$$
\tau:=\min \left\{n \geq 0: S_{n}=A \text { or } S_{n}=-B\right\} .
$$

- For $-B \leq k \leq A$, define

$$
g(k):=\mathbb{E}\left[\tau \mid S_{0}=k\right] .
$$

- Clearly, $\widetilde{(-B)}=0, \tilde{g}(A)=0$.
- For $-B<k<A$, we have

$$
\begin{aligned}
g(k) & =\frac{1}{2} \mathbb{E}\left[\tau \mid S_{0}=k, X_{1}=1\right]+\frac{1}{2} \mathbb{E}\left[\tau \mid S_{0}=k, X_{1}=-1\right] \\
& =\frac{1}{2}(g(k+1)+1)+\frac{1}{2}(g(k-1)+1) \\
& =\frac{1}{2} g(k+1)+\frac{1}{2} g\left(\sim_{\sim}^{k}\right)+\sim_{\sim}^{1} .
\end{aligned}
$$

First step analysis

- Let $(\Delta h)(k):=h(k+1)-h(k)$.
- Then, for all $-B<k<A$

$$
\begin{aligned}
(\Delta(\Delta g))(k-1) & =(\Delta g)(k)-(\Delta g)(k-1) \\
& =g(k+1)-g(k)-g(k)+g(k-1) \\
& =g(k+1)-(g(k+1)+g(k-1)+2)+g(k-1) \\
& =-2
\end{aligned}
$$

- "Second derivative of g is -2 " so $g(k)=-k^{2}+D k+C$.
- Using boundary conditions,

$$
g(k)=-(k-A)(k+B) .
$$

First step analysis

Therefore,

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k \bar{X} A)(k+B) .
$$

in our example

$$
\begin{aligned}
& \tau_{(A,-B)} \\
& g(0)=A B
\end{aligned}
$$

First step analysis

Therefore,

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k \nexists A)(k+B) .
$$

- Answer 3: $A=200, B=100, g(0)=2 \times 10^{4}$.

First step analysis

Therefore,

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k+A)(k-B) .
$$

- Answer 3: $A=200, B=100, g(0)=2 \times 10^{4}$.
- Answer 4 (ii): " $A=\infty$ ", $B=100, g(0)=\infty$.

First step analysis

Therefore,

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k+A)(k-B) .
$$

- Answer 3: $A=200, B=100, g(0)=2 \times 10^{4}$.
- Answer 4 (ii): " $A=\infty$ ", $B=100, g(0)=\infty$.
- Formally, let

$$
\tau_{1}=\min \left\{n \geq 0: S_{n}=-100\right\}
$$

First step analysis

Therefore,

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k+A)(k-B) .
$$

- Answer 3: $A=200, B=100, g(0)=2 \times 10^{4}$.
- Answer 4 (ii): " $A=\infty$ ", $B=100, g(0)=\infty$.
- Formally, let

$$
\begin{aligned}
\tau_{1} & =\min \left\{n \geq 0: S_{n}=-100\right\}, \\
\tau_{2}(\ell) & =\min \left\{n \geq 0: S_{n}=-100 \text { or } S_{n}=\ell\right\} \quad \forall \ell \geq 1 .
\end{aligned}
$$

First step analysis

Therefore,

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k+A)(k-B) .
$$

- Answer 3: $A=200, B=100, g(0)=2 \times 10^{4}$.
- Answer 4 (ii): " $A=\infty$ ", $B=100, g(0)=\infty$.
- Formally, let

$$
\begin{aligned}
\tau_{1} & =\min \left\{n \geq 0: S_{n}=-100\right\}, \\
\tau_{2}(\ell) & =\min \left\{n \geq 0: S_{n}=-100 \text { or } S_{n}=\ell\right\} \quad \forall \ell \geq 1
\end{aligned}
$$

- Then, for all $\ell \geq 1, \tau_{2}(\ell) \leq \tau_{1}$

First step analysis

Therefore,

$$
g(k)=\mathbb{E}\left[\tau \mid S_{0}=k\right]=-(k+A)(k-B) .
$$

- Answer 3: $A=200, B=100, g(0)=2 \times 10^{4}$.
- Answer 4 (ii): " $A=\infty$ ", $B=100, g(0)=\infty$.
- Formally, let

$$
\begin{aligned}
\tau_{1}= & \min \left\{n \geq 0: S_{n}=-100\right\}, \\
\tau_{2}(\ell) & =\min \left\{n \geq 0: S_{n}=-100 \text { or } S_{n}=\ell\right\} \quad \forall \ell \geq 1 .
\end{aligned}
$$

- Then, for all $\ell \geq 1, \tau_{2}(\ell) \leq \tau_{1}$ so that

$$
g(0)=\begin{array}{r}
-(0-160)(0+\ell) \\
100 \ell=\mathbb{E}\left[\tau_{2}(\ell) \mid S_{0}=0\right] \leq \mathbb{E}\left[\tau_{1} \mid S_{0}=0\right], ~
\end{array}
$$

$$
s \tau_{1} \mid s_{0}=0
$$

and now take $\ell \rightarrow \infty$.

First step analysis•

- In words, for a symmetric simple random walk starting at 0 , the expected time to hit -100 is infinite! Of course, there is nothing special about -100 here.

First step analysis

- In words, for a symmetric simple random walk starting at 0 , the expected time to hit -100 is infinite! Of course, there is nothing special about -100 here.
- On the other hand, Answer 4(i):

$$
\tau_{2}(l)=\text { min time to hit }
$$

$$
-100 \text { OR }+l
$$

$$
\begin{aligned}
\mathbb{P}\left[S_{n} \text { visits }-100\right] & \geq \mathbb{P}[\underbrace{S_{\tau_{2}(\ell)}=-100}] \\
& =\underbrace{l}_{100+l}
\end{aligned}
$$

First step analysis

- In words, for a symmetric simple random walk starting at 0 , the expected time to hit -100 is infinite! Of course, there is nothing special about -100 here.
- On the other hand, Answer 4(i):

$$
\begin{aligned}
\mathbb{P}\left[S_{n} \text { visits }-100\right] & \geq \mathbb{P}\left[S_{\tau_{2}(\ell)}=-100\right] \\
& =\frac{\ell}{100+\ell} \\
& \rightarrow 1 \text { as } \ell \rightarrow \infty
\end{aligned}
$$

First step analysis

- In words, for a symmetric simple random walk starting at 0 , the expected time to hit -100 is infinite! Of course, there is nothing special about -100 here.
- On the other hand, Answer 4(i):

$$
\begin{aligned}
\mathbb{P}\left[S_{n} \text { visits }-100\right] & \geq \mathbb{P}\left[S_{\tau_{2}(\ell)}=-100\right] \\
& =\frac{\ell}{100+\ell} \\
& \rightarrow 1 \text { as } \ell \rightarrow \infty
\end{aligned}
$$

- So, a symmetric simple random walk starting at 0 visits -100 with probability 1. Again, there is nothing special about -100 here.

Summary

We have studied some aspects of the Gambler's Ruin.

- What is the probability that a symmetric simple random walk started from 0 hits 2 before -1 ? We saw that this is $1 / 3$.
- What is the expectation of the first time when the walk hits either 2 or -1 ? We saw that this is 2 .
- Moreover, we saw that the while the probability of hitting 1 is 1 , the expectation of the first time we hit 1 is infinite. ∞

$$
\mathbb{E}\left[\tau_{1}\right]=\sum_{k=1}^{\infty} \mathbb{P}\left[\tau_{1}=k\right] \cdot k
$$

Path counting and applications

Today, we will develop tools that allow us to answer questions like the following:

- What is the probability that the first time we hit 1 is exactly 101 steps?

Path counting and applications

Today, we will develop tools that allow us to answer questions like the following:

- What is the probability that the first time we hit 1 is exactly 101 steps?
- What is the probability that the random walk stays non-negative for the first 2020 steps?

Path counting and applications

Today, we will develop tools that allow us to answer questions like the following:

- What is the probability that the first time we hit 1 is exactly 101 steps?
- What is the probability that the random walk stays non-negative for the first 2020 steps?
- What is the probability that the maximum value of the first 2020 steps of the random walk is 10 ?

Path counting and applications

Today, we will develop tools that allow us to answer questions like the following:

- What is the probability that the first time we hit 1 is exactly 101 steps?
- What is the probability that the random walk stays non-negative for the first 2020 steps?
- What is the probability that the maximum value of the first 2020 steps of the random walk is 10 ?
- ...and more!

Path counting

We will need the following notation:

- $N_{n}(a, b)=$ number of paths from a to b with n steps.

Image courtesy www.isical.ac.in

Path counting

$$
\text { at time } 1 \ldots n-1
$$

- $N_{n}^{0}(a, b)=$ number of paths from a to b with n steps that visit 0 .
- $N_{n}^{\neq 0}(a, b)=$ number of paths from a to b with n steps that do not visit 0 at times $1,2, \ldots, n-1$.

Path counting

- $N_{n}^{0}(a, b)=$ number of paths from a to b with n steps that visit 0 after time 1 .
- $N_{n}^{\neq 0}(a, b)=$ number of paths from a to b with n steps that do not visit 0 at times $1,2, \ldots, n-1$.

Note the following direct consequences of the definitions.

- $N_{n}(a, b)=N_{n}^{\neq 0}(a, b)+N_{n}^{0}(a, b)$.

Path counting

- $N_{n}^{0}(a, b)=$ number of paths from a to b with n steps that visit 0 after time 1 .
- $N_{n}^{\neq 0}(a, b)=$ number of paths from a to b with n steps that do not visit 0 at times $1,2, \ldots, n-1$.

Note the following direct consequences of the definitions.

- $N_{n}(a, b)=\widetilde{N_{n}^{\neq 0}(a, b)}+\widetilde{N_{n}^{0}(a, b)}$.
- Also, $N_{n}(a, b)=N_{n}^{0}(a, b)$ if a and b have different signs.

Path counting

Let us compute $N_{n}(a, b)$.

- Let u denote the number of +1 steps and d denote the number of -1 steps.
- Since the path has n steps, we must have $u+d=n$.

Path counting

Let us compute $N_{n}(a, b)$.

- Let u denote the number of +1 steps and d denote the number of -1 steps.
- Since the path has n steps, we must have $u+d=n$.
- Since the path goes from a to b, we must have $u-d=b-a$.

Path counting

Let us compute $N_{n}(a, b)$.

- Let u denote the number of +1 steps and d denote the number of -1 steps.
- Since the path has n steps, we must have $u+d=n$.
- Since the path goes from a to b, we must have $u-d=b-a$.
- Hence, $u=(n+b-a) / 2$ so that
n steps

$$
\pm \begin{gathered}
\text { ce, } u=(n+b-a) / 2 \text { so that } \quad n \text { steps } \\
+-1+1 \quad n \text { of them are }+1 \\
n=3
\end{gathered}
$$

Path counting

Let us compute $N_{n}(a, b)$.

- Let u denote the number of +1 steps and d denote the number of -1 steps.
- Since the path has n steps, we must have $u+d=n$.
- Since the path goes from a to b, we must have $u-d=b-a$.
- Hence, $u=(n+b-a) / 2$ so that

$$
N_{n}(a, b)=\binom{n}{(\underbrace{n+b-a) / 2}}, \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

with the convention that $\binom{n}{r}=0$ if r is not an integer.

Reflection principle
For any $a>0$ and $b>0$,
how can we compute

- $N_{n}^{0}(a, b)=N_{n}(-a, b)$.

$$
N_{n}^{0}(a, b) ? \text { say } a \neq 0, b \neq 0
$$

(1) a and b have opp. signs. you know how to do this we car compute

$$
\begin{aligned}
& \operatorname{IT}_{n}^{0}(a, b) \\
& f \int \hat{} \quad\{ \\
& M_{n}(-a, b) \\
& f \circ g_{g}=i d=
\end{aligned}
$$

 first time that you hit 0

Reflection principle

For any $a>0$ and $b>0$,

- $N_{n}^{0}(a, b)=N_{n}(-a, b)$.
- So, $N_{n}^{\neq 0}(a, b)=N_{n}(a, b)-N_{n}(-a, b)$.

Reflection principle

For any $a>0$ and $b>0$,

- $N_{n}^{0}(a, b)=N_{n}(-a, b)$.
- So, $N_{n}^{\neq 0}(a, b)=N_{n}(a, b)-N_{n}(-a, b)$.

The point is that we already have a formula for the expressions on the right hand side.

Return time to 0

- Let $\left(S_{n}\right)_{n \geq 0}$ be a simple, symmetric random walk starting from 0 .
- Let $\tau_{0}:=\inf \left\{n \geq 1: S_{n}=0\right\}$.
- What is the mf of τ_{0} ?

$$
\begin{aligned}
& \text { R }\left[\tau_{0}=K\right] \quad \forall K \in \mathbb{R}^{\top} \\
& \mathbb{R}\left[\tau_{0}=\underline{1}\right]=? \quad \mathbb{P}\left[\tau_{0}=3\right]=? \\
& \underline{R}\left[\tau_{0}=\right.\text { odd number } \\
&]=0
\end{aligned}
$$

Return time to 0

- Let $\left(S_{n}\right)_{n \geq 0}$ be a simple, symmetric random walk starting from 0 .
- Let $\tau_{0}:=\inf \left\{n \geq 1: S_{n}=0\right\}$.
- What is the mf of τ_{0} ?
- Observe that the support of τ_{0} consists of even natural numbers.

$$
\text { values } k \text { s.t. } \mathbb{P}\left[\tau_{0}=k\right] \neq 0
$$

Return time to 0

- Let $\left(S_{n}\right)_{n \geq 0}$ be a simple, symmetric random walk starting from 0 .
- Let $\tau_{0}:=\inf \left\{n \geq 1: S_{n}=0\right\}$.
- What is the mf of τ_{0} ?
- Observe that the support of τ_{0} consists of even natural numbers.
- Moreover, for any $k \geq 1$
so of fave. paths

$$
\begin{array}{ll}
\mathbb{P}\left[\tau_{0}=2 k\right]=N_{2 k}^{\neq 0}(0,0) \cdot 2^{-2 k} . & \begin{array}{l}
2^{2 k}= \\
\text { number of } \\
\text { paths of } \\
\text { length } 2 k .
\end{array} \\
\rightarrow \text { start at } 0 & \\
\rightarrow \text { end at } 0 & \text { take } 2 k \text { steps }
\end{array}
$$

Return time to 0

To compute $N_{2 k}^{\neq 0}(0,0)$, we can use the reflection principle.

$$
\begin{aligned}
& N_{2 k}^{\neq 0}(0,0) \xrightarrow{\substack{\text { first step } \\
=N_{2 k-1} \\
N_{2 k-1}^{\neq 0}(1,0)}}+\underbrace{N_{2 k-1}^{\neq 0}(-1,0)} \\
& N_{2 k-1}^{\neq 0}(1,0)>N_{2 k-1}^{\neq 0}(1,0)
\end{aligned}
$$

Return time to 0

To compute $N_{2 k}^{\neq 0}(0,0)$, we can use the reflection principle.

$$
\begin{aligned}
& N_{2 k}^{\neq 0}(0,0)=N_{2 k-1}^{\neq 0}(1,0)+N_{2 k-1}^{\neq 0}(-1,0) \\
& =2 N_{2 k-1}^{\neq 0}(1,0)
\end{aligned}
$$

Return time to 0

To compute $N_{2 k}^{\neq 0}(0,0)$, we can use the reflection principle.

$$
\begin{aligned}
N_{2 k}^{\neq 0}(0,0) & =N_{2 k-1}^{\neq 0}(1,0)+N_{2 k-1}^{\neq 0}(-1,0) \\
& =2 N_{2 k-1}^{\neq 0}(1,0) \\
& =2 N_{2 k-2}^{\neq 0}(1,1)
\end{aligned}
$$

Return time to 0

To compute $N_{2 k}^{\neq 0}(0,0)$, we can use the reflection principle.

$$
\begin{aligned}
N_{2 k}^{\neq 0}(0,0) & =N_{2 k-1}^{\neq 0}(1,0)+N_{2 k-1}^{\neq 0}(-1,0) \\
& =2 N_{2 k-1}^{\neq 0}(1,0) \\
& =2 N_{2 k-2}^{\neq 0}(1,1) \\
& =2\left(N_{2 k-2}(1,1)-N_{2 k-2}^{0}(1,1)\right)
\end{aligned}
$$

Return time to 0

To compute $N_{2 k}^{\neq 0}(0,0)$, we can use the reflection principle.

$$
\begin{aligned}
N_{2 k}^{\neq 0}(0,0) & =N_{2 k-1}^{\neq 0}(1,0)+N_{2 k-1}^{\neq 0}(-1,0) \\
& =2 N_{2 k-1}^{\neq 0}(1,0) \\
& =2 N_{2 k-2}^{\neq 0}(1,1) \\
& =2\left(N_{2 k-2}(1,1)-N_{2 k-2}^{0}(1,1)\right) \\
& =2\left(N_{2 k-2}(1,1)-N_{2 k-2}(-1,1)\right)
\end{aligned}
$$

Return time to 0

To compute $N_{2 k}^{\neq 0}(0,0)$, we can use the reflection principle.

$$
\begin{aligned}
N_{2 k}^{\neq 0}(0,0) & =N_{2 k-1}^{\neq 0}(1,0)+N_{2 k-1}^{\neq 0}(-1,0) \\
& =2 N_{2 k-1}^{\neq 0}(1,0) \\
& =2 N_{2 k-2}^{\neq 0}(1,1) \\
& =2\left(N_{2 k-2}(1,1)-N_{2 k-2}^{0}(1,1)\right) \\
& =2\left(N_{2 k-2}(1,1)-N_{2 k-2}(-1,1)\right) \\
& =2\left(\binom{2 k-2}{k-1}-\binom{2 k-2}{k}\right) .
\end{aligned}
$$

Return time to 0

- Simplifying the arithmetic, we get that

$$
N_{2 k}^{\neq 0}(0,0)=\frac{1}{2 k-1}\binom{2 k}{k} .
$$

Return time to 0

- Simplifying the arithmetic, we get that

$$
N_{2 k}^{\neq 0}(0,0)=\frac{1}{2 k-1}\binom{2 k}{k} .
$$

- Hence,

$$
\begin{aligned}
\mathbb{P}\left[\tau_{0}=2 k\right] & =\frac{1}{2 k-1}\binom{2 k}{k} 2^{-2 k} \\
& =\frac{1}{2 k-1} \mathbb{P}\left[S_{2 k}=0\right] .
\end{aligned}
$$

The Ballot Problem

- Consider an election with two candidates A and B.
- Suppose that a votes have been cast for A and b votes have been cast for b where $a>b$.
- After the votes have been cast, they are counted in a uniformly random order.

The Ballot Problem

- Consider an election with two candidates A and B.
- Suppose that a votes have been cast for A and b votes have been cast for b where $a>b$.
- After the votes have been cast, they are counted in a uniformly random order.
- Since $a>b$, after all the votes are counted, A emerges as the winner.

The Ballot Problem

- Consider an election with two candidates A and B.
- Suppose that a votes have been cast for A and b votes have been cast for b where $a>b$.
- After the votes have been cast, they are counted in a uniformly random order.
- Since $a>b$, after all the votes are counted, A emerges as the winner.
- What is the probability that A leads B throughout the count?

The Ballot Problem

- For $0 \leq i \leq a+b$, let S_{i} denote the lead of A after i votes have been counted.
- Hence, $S_{0}=0$ and $S_{a+b}=a-b$.

The Ballot Problem

- For $0 \leq i \leq a+b$, let S_{i} denote the lead of A after i votes have been counted.
- Hence, $S_{0}=0$ and $S_{a+b}=a-b$.
- Since the votes are counted in a uniformly random order, the sequence $S_{0}, S_{1}, \ldots, S_{a+b}$ is a uniformly random path from 0 to $a-b$.

The Ballot Problem

- For $0 \leq i \leq a+b$, let S_{i} denote the lead of A after i votes have been counted.
- Hence, $S_{0}=0$ and $S_{a+b}=a-b$.
- Since the votes are counted in a uniformly random order, the sequence $S_{0}, S_{1}, \ldots, S_{a+b}$ is a uniformly random path from 0 to $a-b$.
- Therefore,

$$
\mathbb{P}[A \text { leads throughout }]=\frac{N_{a+b}^{\neq 0}(0, a-b)}{N_{a+b}(0, a-b)}
$$

The Ballot Problem

- For $0 \leq i \leq a+b$, let S_{i} denote the lead of A after i votes have been counted.
- Hence, $S_{0}=0$ and $S_{a+b}=a-b$.
- Since the votes are counted in a uniformly random order, the sequence $S_{0}, S_{1}, \ldots, S_{a+b}$ is a uniformly random path from 0 to $a-b$.
- Therefore,

$$
\mathbb{P}[A \text { leads throughout }]=\frac{N_{a+b}^{\neq 0}(0, a-b)}{N_{a+b}(0, a-b)}
$$

- So, it only remains to compute $N_{a+b}^{\neq 0}(0, a-b)$.

The Ballot Problem

We need to compute $N_{a+b}^{\neq 0}(0, a-b)$.

$$
\begin{aligned}
N_{a+b}^{\neq 0}(0, a-b) & =N_{a+b-1}^{\neq 0}(1, a-b) \\
& =N_{a+b-1}(1, a-b)-N_{a+b-1}^{0}(1, a-b)
\end{aligned}
$$

The Ballot Problem

We need to compute $N_{a+b}^{\neq 0}(0, a-b)$.

$$
\begin{aligned}
N_{a+b}^{\neq 0}(0, a-b) & =N_{a+b-1}^{\neq 0}(1, a-b) \\
& =N_{a+b-1}(1, a-b)-N_{a+b-1}^{0}(1, a-b) \\
& =N_{a+b-1}(1, a-b)-N_{a+b-1}(-1, a-b)
\end{aligned}
$$

The Ballot Problem

We need to compute $N_{a+b}^{\neq 0}(0, a-b)$.

$$
\begin{aligned}
N_{a+b}^{\neq 0}(0, a-b) & =N_{a+b-1}^{\neq 0}(1, a-b) \\
& =N_{a+b-1}(1, a-b)-N_{a+b-1}^{0}(1, a-b) \\
& =N_{a+b-1}(1, a-b)-N_{a+b-1}(-1, a-b) \\
& =\binom{a+b-1}{a-1}-\binom{a+b-1}{a} \\
& =\frac{a-b}{a+b} \cdot N_{a+b}(0, a-b) .
\end{aligned}
$$

The Ballot Problem

We need to compute $N_{a+b}^{\neq 0}(0, a-b)$.

$$
\begin{aligned}
N_{a+b}^{\neq 0}(0, a-b) & =N_{a+b-1}^{\neq 0}(1, a-b) \\
& =N_{a+b-1}(1, a-b)-N_{a+b-1}^{0}(1, a-b) \\
& =N_{a+b-1}(1, a-b)-N_{a+b-1}(-1, a-b) \\
& =\binom{a+b-1}{a-1}-\binom{a+b-1}{a} \\
& =\frac{a-b}{a+b} \cdot N_{a+b}(0, a-b) .
\end{aligned}
$$

Hence,
$\mathbb{P}[A$ leads throughout $]=\frac{a-b}{a+b}$.

The Ballot Problem

- One way to reinterpret the conclusion of the Ballot problem is that for any $a>b \geq 0$ and for a simple symmetric random walk starting from $S_{0}=0$,

$$
\mathbb{P}\left[S_{i}>0 \quad \forall i=1, \ldots, a+b-1 \mid S_{a+b}=a-b\right]=\frac{a-b}{a+b}
$$

The Ballot Problem

- One way to reinterpret the conclusion of the Ballot problem is that for any $a>b \geq 0$ and for a simple symmetric random walk starting from $S_{0}=0$,

$$
\mathbb{P}\left[S_{i}>0 \quad \forall i=1, \ldots, a+b-1 \mid S_{a+b}=a-b\right]=\frac{a-b}{a+b}
$$

- Rewritten in more convenient notation, for any integers $k, n>0$,

$$
\mathbb{P}\left[S_{1}>0, \ldots, S_{n-1}>0, S_{n}=k\right]=\frac{k}{n} \cdot \mathbb{P}\left[S_{n}=k\right] .
$$

The Ballot Problem

- One way to reinterpret the conclusion of the Ballot problem is that for any $a>b \geq 0$ and for a simple symmetric random walk starting from $S_{0}=0$,

$$
\mathbb{P}\left[S_{i}>0 \quad \forall i=1, \ldots, a+b-1 \mid S_{a+b}=a-b\right]=\frac{a-b}{a+b}
$$

- Rewritten in more convenient notation, for any integers $k, n>0$,

$$
\mathbb{P}\left[S_{1}>0, \ldots, S_{n-1}>0, S_{n}=k\right]=\frac{k}{n} \cdot \mathbb{P}\left[S_{n}=k\right] .
$$

- On the homework, you will explore variants of this.

