
STATS 217: Introduction to Stochastic Processes I

Lecture 3
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The Ballot Problem

Consider an election with two candidates A and B.

Suppose that a votes have been cast for A and b votes have been cast for b
where a > b.

After the votes have been cast, they are counted in a uniformly random order.

Since a > b, after all the votes are counted, A emerges as the winner.

What is the probability that A leads B throughout the count?
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The Ballot Problem

For 0 ≤ i ≤ a+b, let Si denote the lead of A after i votes have been counted.

Hence, S0 = 0 and Sa+b = a− b.

Since the votes are counted in a uniformly random order, the sequence
S0,S1, . . . ,Sa+b is a uniformly random path from 0 to a− b.

Therefore,

P[A leads throughout] =
N 6=0

a+b(0, a− b)

Na+b(0, a− b)
.

So, it only remains to compute N 6=0
a+b(0, a− b).
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The Ballot Problem

We need to compute N 6=0
a+b(0, a− b).

N 6=0
a+b(0, a− b) = N 6=0

a+b−1(1, a− b)

= Na+b−1(1, a− b)− N0
a+b−1(1, a− b)

= Na+b−1(1, a− b)− Na+b−1(−1, a− b)

=

(
a + b − 1

a− 1

)
−
(
a + b − 1

a

)
=

a− b

a + b
· Na+b(0, a− b).

Hence,

P[A leads throughout] =
a− b

a + b
.
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The Ballot Problem

One way to reinterpret the conclusion of the Ballot problem is that for any
a > b ≥ 0 and for a simple symmetric random walk starting from S0 = 0,

P[Si > 0 ∀i = 1, . . . , a + b − 1 | Sa+b = a− b] =
a− b

a + b
.

Rewritten in more convenient notation, for any integers k, n > 0,

P[S1 > 0, . . . ,Sn−1 > 0,Sn = k] =
k

n
· P[Sn = k].

On the homework, you will explore variants of this.
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Path counting and applications

So far, we used path counting to answer the following questions:

What is the distribution of the first time that a symmetric simple random
walk returns to its starting point?

What is the probability that in a uniformly random counting of the votes, the
candidate with more votes stays ahead throughout?

Today we will study the following questions:

What is the distribution of the first time that a symmetric simple random
walk hits 1?

If the random walk is run for 2n steps, what is the distribution of the last
time that the random walk visits its starting point?

What is the distribution of the fraction of the time that the random walk is
positive?...

and more!
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Hitting time

Let (Sn)n≥0 be a simple, symmetric random walk starting from 0. For b > 0, let
τb = inf{n ≥ 1 : Sn = b}.

We already saw that P[τb <∞] = 1 and E[τb] =∞.

What is the pmf of τb?

We will make use of the trick of looking at the time reversal of the walk.

Recall that Sj =
∑j

i=1 Xj where X1,X2, . . . are i.i.d. Rademacher random
variables.

Since (X1, . . . ,Xn) has the same distribution as (Xn, . . . ,X1), it follows that

Sj ∼ Xn + Xn−1 + · · ·+ Xn−j

∼ Sn − Sn−j ,

so that
(S1,S2, . . . ,Sn) ∼ (Sn − Sn−1,Sn − Sn−2, . . . ,Sn).
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Hitting time

We want to compute P[τb = k].

We have

P[τb = k] = P[S1 < b, . . . ,Sk−1 < b,Sk = b]

= P[S1 < Sk , . . . ,Sk−1 < Sk ,Sk = b]

= P[Sk − Sk−1 > 0, . . . ,Sk − S1 > 0,Sk = b]

= P[S1 > 0, . . . ,Sk−1 > 0,Sk = b]

=
b

k
· P[Sk = b].
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Last return to 0

Let (Sn)n≥0 be a symmetric simple random walk starting from S0 = 0.

Let
τ̂2n := max{0 ≤ i ≤ 2n : Si = 0}

denote the last time before 2n that the random walk visits 0.

What is the distribution of τ̂2n?
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Last return to 0

On the homework, you will use the reflection principle to show that for any
integer n > 0,

P[S1 6= 0, . . . ,S2n 6= 0 | S0 = 0] = P[S2n = 0].

Given this, we have

P[τ̂2n = 2k] = P[S2k = 0,S2k+1 6= 0, . . . ,S2n 6= 0]

= P[S2k = 0]P[S2k+1 6= 0, . . . ,S2n 6= 0 | S2k = 0]

= P[S2k = 0]P[S1 6= 0, . . . ,S2n−2k 6= 0 | S0 = 0]

= P[S2k = 0]P[S2n−2k = 0].

Notice, in particular, that

P[τ̂2n = 2k] = P[τ̂2n = 2n − 2k](!)
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Last return to 0

For large k, by Stirling’s formula, we have

P[S2k = 0] ∼ 1√
πk
,

so that

P[τ̂2n = 2k] = P[S2k = 0]P[S2n−2k = 0]

∼ 1√
πk

1√
π(n − k)

=
1

n
f

(
k

n

)
,

where

f (x) =
1

π
√
x(1− x)

0 < x < 1.
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Last return to 0

Plot of f (x) = 1

π
√

x(1−x)
for 0 < x < 1.

Image generated using Wolfram Alpha
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The Arcsine Law

For large k , n, we have

P[τ̂2n = 2k] ∼ 1

n
f

(
k

n

)
.

Therefore, for any 0 < x < 1,

P[τ̂2n ≤ 2nx ] ∼
∑

0≤k/n≤x

1

n
f

(
k

n

)

∼
∫ x

0

f (t)dt

=
2

π
· arcsin

√
x .
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The Arcsine Law

Plot of g(x) = 2
π · arcsin

√
x for 0 ≤ x ≤ 1.

Image generated using Wolfram Alpha
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The Arcsine Law

Some values of g(x) = 2
π · arcsin

√
x .

x = 0.1 g(x) ≈ 0.204.

x = 0.2 g(x) ≈ 0.295.

x = 0.3 g(x) ≈ 0.369.

x = 0.4 g(x) ≈ 0.435.

x = 0.5 g(x) = 0.5.

x = 0.6 g(x) ≈ 0.565.

x = 0.7 g(x) ≈ 0.631.

x = 0.8 g(x) ≈ 0.705.

x = 0.9 g(x) ≈ 0.796.
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The Arcsine Law

Using similar arguments, one can show that,

P
[
|{1 ≤ i ≤ n : Si > 0}|

n
≤ x

]
→ 2

π
· arcsin

√
x .

and also that

P
[ t∗
n
≤ x

]
→ 2

π
· arcsin

√
x ,

where 0 ≤ t∗ ≤ n is the first time when the random walk takes on its maximum
value.
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Some consequences of the Arcsine Law

In a (long) sequence of coin flips, the probability that heads leads 90% of the
time is roughly 20%.

(Due to S. Dunbar) In other words, there is a 20% chance that a totally
random investment fund has positive net fortune 90% of the time.

(Clauset, Kogan, Redner, 2015) In e.g. professional basketball, the
distribution of the last lead change and time of the maximum lead change
follow the arcsine law, which is what is predicted by a symmetric simple
random walk.

In particular, lead changes are most likely near the start and the end of the
game. Similarly, the time of the largest lead is most likely to be near the start
and the end of the game.
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