STATS 217: Introduction to Stochastic Processes I

Lecture 4

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.

3

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.
- Generally, let the generation k bacteria be b_1, \ldots, b_k . Then, b_i gives birth to ξ_i bacteria where ξ_1, \ldots, ξ_k are i.i.d. copies of ξ .
- What is the probability that the bacteria population goes extinct?

- Consider a single bacterium in an ideal environment. We call this the generation 0 bacterium.
- This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer valued random variable. We call these the generation 1 bacteria.
- Generally, let the generation k bacteria be b_1, \ldots, b_k . Then, b_i gives birth to ξ_i bacteria where ξ_1, \ldots, ξ_k are i.i.d. copies of ξ .
- What is the probability that the bacteria population goes extinct?
- This problem was studied by Galton and Watson in relation to the propagation of last names in Victorian England.

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

•
$$Z_0 = 1$$
,

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

- $Z_0 = 1$,
- $Z_1 = \xi_{0,1}$,

Branching processes

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

• $Z_0 = 1$, • $Z_1 = \xi_{0,1}$, • $Z_2 = \sum_{i=1}^{Z_1} \xi_{1,i}$, ... one summary actration 2 • ϕ in generation Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

- $Z_0 = 1$,
- $Z_1 = \xi_{0,1}$,
- $Z_2 = \sum_{i=1}^{Z_1} \xi_{1,i}, \ldots$
- $Z_k = \sum_{i=1}^{Z_{k-1}} \xi_{k-1,i}$.

Note that if $Z_i = 0$ for some $i \ge 1$, then $Z_j = 0$ for all $j \ge i$. This corresponds to the extinction of the population.

Let Z_n denote the number of bacteria in generation n and let $(\xi_{i,j})$ denote i.i.d. copies of ξ . Then,

- $Z_0 = 1$,
- $Z_1 = \xi_{0,1}$,
- $Z_2 = \sum_{i=1}^{Z_1} \xi_{1,i}, \ldots$
- $Z_k = \sum_{i=1}^{Z_{k-1}} \xi_{k-1,i}$.

Note that if $Z_i = 0$ for some $i \ge 1$, then $Z_j = 0$ for all $j \ge i$. This corresponds to the extinction of the population.

Formally, we say that 0 is an **absorbing state** for the process $(Z_n)_{n\geq 0}$.

Branching processes

- We have a branching process $(Z_n)_{n\geq 0}$ with offspring distribution ξ .
- We are interested in the probability that the population survives i.e.

 $\mathbb{P}[Z_n \geq 1 \quad \forall n].$

Branching processes

- We have a branching process $(Z_n)_{n\geq 0}$ with offspring distribution ξ .
- We are interested in the probability that the population survives i.e.

 $\mathbb{P}[Z_n \geq 1 \quad \forall n].$

• Trivial case: Suppose $\mathbb{P}[\xi \ge 1] = 1$. Then, $\mathbb{P}[Z_n \ge 1 \quad \forall n] = 1$. every individual has atleast one child

- We have a branching process $(Z_n)_{n\geq 0}$ with offspring distribution ξ .
- We are interested in the probability that the population survives i.e.

 $\mathbb{P}[Z_n \geq 1 \quad \forall n].$

- Trivial case: Suppose $\mathbb{P}[\xi \ge 1] = 1$. Then, $\mathbb{P}[Z_n \ge 1 \quad \forall n] = 1$.
- Hence, we may assume that for all integers $k \ge 0$,

$$\mathbb{P}[\xi=k]=:p_k$$

with $0 < p_0 < 1$.

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ? $Z_n = \sum_{i=1}^{Z_n} \xi_i$ $\frac{\pi}{2} \qquad Y = \sum_{i=1}^{k} \xi_i$ $I \neq [-Y] = k I \in [\xi]$ = k M

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ? • $\mathbb{E}[Z_0] = 1$.

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

•
$$\mathbb{E}[Z_0] = 1.$$

•
$$\mathbb{E}[Z_1] = \mathbb{E}[\xi_{0,1}] = \mu$$
.

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

•
$$\mathbb{E}[Z_0] = 1.$$

•
$$\mathbb{E}[Z_1] = \mathbb{E}[\xi_{0,1}] = \mu.$$

۲

Suppose that $\mu := \mathbb{E}[\xi]$. What is the expectation of Z_n ?

•
$$\mathbb{E}[Z_0] = 1.$$

•
$$\mathbb{E}[Z_1] = \mathbb{E}[\xi_{0,1}] = \mu.$$

۲

$$\mathbb{E}[Z_2] = \mathbb{E}\left[\sum_{i=1}^{Z_1} \xi_{1,i}\right]$$
$$= \sum_{z \ge 0} \mathbb{E}\left[\sum_{i=1}^{z} \xi_{i,1}\right] \mathbb{P}[Z_1 = z]$$
$$= \sum_{z \ge 0} z\mu \mathbb{P}[Z_1 = z]$$
$$= \mu \sum_{z \ge 0} z\mathbb{P}[Z_1 = z]$$
$$= \mu \cdot \mathbb{E}[Z_1] = \mu^2.$$

• Similarly,
$$\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$$
.

.

- Similarly, $\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$.
- $\bullet\,$ This shows that if $\mu<$ 1, then with probability 1, the population becomes extinct.

- Similarly, $\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$.
- $\bullet\,$ This shows that if $\mu<$ 1, then with probability 1, the population becomes extinct.
- Indeed, if $\mu < 1$ (this is called the **subcritical case**), then

.

- Similarly, $\mathbb{E}[Z_n] = \mu \mathbb{E}[Z_{n-1}] = \mu^n$.
- This shows that if $\mu <$ 1, then with probability 1, the population becomes extinct.
- Indeed, if $\mu < 1$ (this is called the **subcritical case**), then

$$\mathbb{P}[Z_n \ge 1] \le \mathbb{E}[Z_n] = \mu^n \to 0.$$

- What about the case when $\mu \geq 1$?
- If $\mu = 1$, then $\mathbb{E}[Z_n] = 1$ and if $\mu > 1$, then $\mathbb{E}[Z_n] \to \infty$, but this doesn't say anything about the probability of survival.

• To analyse the case $\mu \geq$ 1, we will use first step analysis.

- $\bullet\,$ To analyse the case $\mu\geq$ 1, we will use first step analysis.
- $\bullet\,$ Let ρ denote the probability that the population eventually dies out so that

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

- $\bullet\,$ To analyse the case $\mu\geq$ 1, we will use first step analysis.
- $\bullet\,$ Let ρ denote the probability that the population eventually dies out so that

$$\rho = \mathbb{P}[Z_n = 0 \text{ for some } n \ge 1].$$

• Suppose that the bacterium b in generation 0 has k children b_1, \ldots, b_k . Then, the population dies out if and only if the subpopulations starting at b_1, \ldots, b_k die out. Moreover, the probability of each of these subpopulations dying out is also ρ .

• Therefore,

$$\rho = \sum_{k=0}^{\infty} \mathbb{P}[\xi_{0,1} = k] \rho^{k} = \sum_{k=0}^{\infty} p_{k} \rho^{k} = \phi(\rho),$$

where

$$\phi(z) := \sum_{k=0}^{\infty} p_k z^k = \mathbb{E}\left[\mathbb{Z}^{\times}\right]$$

is function of $(p_k)_{k\geq 0}$. $\mathbb{E}\left[\mathbb{X} = \mathbb{K}\right] = \mathbb{P}_{\mathbb{K}}$

is the generating

• Therefore,

$$\rho = \sum_{k=0}^{\infty} \mathbb{P}[\xi_{0,1} = k] \rho^k = \sum_{k=0}^{\infty} p_k \rho^k = \phi(\rho),$$

where

$$\phi(z) := \sum_{k=0}^{\infty} p_k z^k$$

is the generating function of $(p_k)_{k\geq 0}$.

• So, we see that the probability of extinction is a fixed point of the generating function i.e. a solution of

$$\rho = \phi(\rho).$$

• We saw that the probability of extinction is a solution of

• We saw that the probability of extinction is a solution of

$$\rho = \phi(\rho) = \sum_{k \ge 0} p_k \rho^k.$$

Since

$$\phi(1)=\sum_{k\geq 0}p_k=1,$$

we see that 1 is always a solution of $\rho = \phi(\rho)$.

• We saw that the probability of extinction is a solution of

$$\rho = \phi(\rho) = \sum_{k \ge 0} p_k \rho^k. \qquad \text{We 'll see} \\ \text{that } \phi \text{ looks} \\ \text{like}$$

τ

Since

$$\phi(1) = \sum_{k \ge 0} p_k = 1, \qquad 1$$

we see that 1 is always a solution of $ho=\phi(
ho).$

• However, this does not mean that the extinction probability is 1, since there may be other solutions to $\rho = \phi(\rho)$.

$$2 \operatorname{soln} s$$
 $\frac{1}{p_0}$ $\frac{1}{1}$ $\frac{1}{1}$

STATS 217

Recall that $\phi(z) = \sum_{k \ge 0} p_k z^k$. • ϕ is non-decreasing on [0,1]. $\therefore \rho \not\leftarrow \not\geq 0$

٠

- ϕ is non-decreasing on [0, 1].
- ϕ is continuous on [0, 1].

Recall that $\phi(z) = \sum_{k\geq 0} p_k z^k$.

- ϕ is non-decreasing on [0, 1].
- ϕ is continuous on [0, 1].

•
$$\phi(0) = p_0 \in (0,1).$$

 $\phi(D) = \sum_{k \ge 0}^{k} p_{k} O^{k}$ $k \ge 0$ $O^{0} = 1$ $O^{n} = 0 \neq n > 1$

- ϕ is non-decreasing on [0, 1].
- ϕ is continuous on [0, 1].

•
$$\phi(0) = p_0 \in (0, 1).$$

•
$$\phi(1) = 1.$$

- ϕ is non-decreasing on [0, 1].
- ϕ is continuous on [0, 1].
- $\phi(0) = p_0 \in (0, 1).$
- $\phi(1) = 1.$
- $\phi'(z) = \sum_{k\geq 1} k p_k z^{k-1}$.

- ϕ is non-decreasing on [0, 1].
- ϕ is continuous on [0, 1].
- $\phi(0) = p_0 \in (0, 1).$
- $\phi(1) = 1.$
- $\phi'(z) = \sum_{k\geq 1} k p_k z^{k-1}$.
- Hence, $\phi'(1) = \sum_{k \ge 1} k p_k = \mu$.

$$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \begin{array}{c} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} & \end{array}{} & \end{array}{} & \begin{array}{c} & \end{array}{} & \begin{array}{c} & \end{array}{} & \begin{array}{c} & \end{array}{} \\ & \end{array}{} \\$$

- ϕ is non-decreasing on [0, 1].
- ϕ is continuous on [0, 1].
- $\phi(0) = p_0 \in (0, 1).$
- $\phi(1) = 1.$
- $\phi'(z) = \sum_{k\geq 1} k p_k z^{k-1}$.
- Hence, $\phi'(1) = \sum_{k \ge 1} k p_k = \mu$.
- $\phi''(z) = \sum_{k \ge 2} k(k-1)p_k z^{k-2} > 0$ for $z \in (0,1]$.
- Hence, ϕ is strictly convex on (0, 1].

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$. • We have $g(0) = p_0 \in (0, 1), g(1) = 0$. • $\psi(1) - 1$ • $\psi(0) - 0 = \rho_0 - 0$ = 1 - 1= O

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$. • We have $g(0) = p_0 \in (0, 1), g(1) = 0$.

• $g''(\rho) = \phi''(\rho) > 0$ for $\rho \in (0, 1]$.

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

• We have $g(0) = p_0 \in (0,1)$, g(1) = 0.

•
$$g''(\rho) = \phi''(\rho) > 0$$
 for $\rho \in (0, 1]$.

• $g'(\rho) = \phi'(\rho) - 1.$

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$. • We have $g(0) = p_0 \in (0, 1), g(1) = 0.$ g(x) po 1 -> in this, g'(1) >0 • $g''(\rho) = \phi''(\rho) > 0$ for $\rho \in (0, 1]$. • $g'(\rho) = \phi'(\rho) - 1.$ • So, we have two cases: • If $\phi'(1) \leq 1$, then $g'(1) \leq 0$ and $g'(\rho) < 0$ for all $\rho \in [0,1)$. Hence, the only solution of $g(\rho) = 0$ is at $\rho = 1$. $\zeta_{\mathcal{N}} \leq 1$ $g'(1) = \phi'(1) - 1$ = $\mu - 1$ $g'(1) = \phi'(1) - 1$ = $M - 1 \leq 0$ g'(1)>0(=) N>1 =) g is a shrictly dec fure. 11 / 15 Lecture 4 STATS 217

$$\phi(p) = p \iff \phi(p) - p = 0$$

Let $g(\rho) = \phi(\rho) - \rho$. We are interested in the solutions of $g(\rho) = 0$ for $\rho = [0, 1]$.

• We have $g(0) = p_0 \in (0,1), \ g(1) = 0.$

•
$$g''(\rho) = \phi''(\rho) > 0$$
 for $\rho \in (0, 1]$.

- $g'(\rho) = \phi'(\rho) 1.$
- So, we have two cases:
 - If $\phi'(1) \leq 1$, then $g'(1) \leq 0$ and $g'(\rho) < 0$ for all $\rho \in [0, 1)$. Hence, the only solution of $g(\rho) = 0$ is at $\rho = 1$.
 - If $\phi'(1) > 1$, then g'(1) > 0. So, there exists exactly one $\rho \in (0, 1)$ such that $g(\rho) = 0$.

Q U>1 : two solutions

• We know that the extinction probability ρ is a solution of $\phi(\rho) = \rho$.

SWOCRit case: extinction prob = 1
CRitical case: extinction prob = 1?
(u=1) = unique solution
of
$$\phi(x) = x$$

in the criticase

- We know that the extinction probability ρ is a solution of $\phi(\rho) = \rho$.
- We also saw that when $\mu = \phi'(1) = 1$, this equation has only one solution: $\rho = 1$.

- We know that the extinction probability ρ is a solution of $\phi(\rho) = \rho$.
- We also saw that when $\mu = \phi'(1) = 1$, this equation has only one solution: $\rho = 1$.
- Therefore, if $\mu = 1$ (this is called the **critical case**), we see that $\rho = 1$.

It remains to deal with the case when µ > 1 (this is called the supercritical case).

- It remains to deal with the case when $\mu > 1$ (this is called the **supercritical** case).
- In this case, $\phi(\rho) = \rho$ has two solutions: $\rho^* < 1$ and 1.
- We claim that the extinction probability in this case is ρ^* .

$$f'n = \prod \left[\overline{z}_{i} = 0 \text{ for some } i \leq n \right]$$

$$i_{y} \text{ first} = \overline{z}_{i}^{1} \int_{n-1}^{k} \beta_{k} = \Phi(\beta_{n-1})$$

$$i_{s \neq p} \qquad i \leq 20$$

$$e \times actly \text{ the argument}$$

$$u \leq n \text{ for } \beta = \Phi(\beta)$$

- It remains to deal with the case when µ > 1 (this is called the supercritical case).
- In this case, $\phi(\rho) = \rho$ has two solutions: $\rho^* < 1$ and 1.
- We claim that the extinction probability in this case is ρ^* .
- To see this, let

$$\rho_n = \mathbb{P}[Z_n = 0].$$

- It remains to deal with the case when µ > 1 (this is called the supercritical case).
- In this case, $\phi(\rho) = \rho$ has two solutions: $\rho^* < 1$ and 1.
- We claim that the extinction probability in this case is ρ^* .
- To see this, let

$$\rho_n = \mathbb{P}[Z_n = 0].$$

• Then, by first step analysis, we have

$$\rho_n = \sum_{k\geq 0} p_k \rho_{n-1}^k = \phi(\rho_{n-1}).$$

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$

ſ°

٠

- We have $\rho_n = \phi(\rho_{n-1})$. $\rho_0 = \Re [Z_0 = 0] = 0$ $(b \land Z_0 = 1)$
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$
- Since $\rho_0 \leq \rho^*$, it follows that

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq ...$
- Since $\rho_0 \leq \rho^*$, it follows that

$$\rho_1 = \phi(\rho_0) \le \phi(\rho^*) = \rho^*.$$

• Iterating this shows that
$$\rho_n \leq \rho^*$$
 for all n .
(1) We have to decide
(3) if we can show or 1
 $\rho_n \leq \rho^* \neq n$,
 $+hen$ will be done.
(4) $O = \rho \leq \rho^* (know +hvr)$ $\rho \leq \rho^*$, then we
will be done.
(4) $O = \rho \leq \rho^* (know +hvr)$ $\rho \leq \rho^*$, then we
will be done.

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$
- Since $\rho_0 \leq \rho^*$, it follows that

$$\rho_1 = \phi(\rho_0) \le \phi(\rho^*) = \rho^*.$$

- Iterating this shows that $\rho_n \leq \rho^*$ for all n.
- Therefore,

$$\rho = \lim_{n \to \infty} \mathbb{P}[Z_n = 0] = \lim_{n \to \infty} p_n \le \rho^*.$$

- We have $\rho_n = \phi(\rho_{n-1})$.
- Since ϕ is a non-decreasing function, $\rho_0 \leq \rho_1 \leq \rho_2 \leq \dots$
- Since $\rho_0 \leq \rho^*$, it follows that

$$\rho_1 = \phi(\rho_0) \le \phi(\rho^*) = \rho^*.$$

- Iterating this shows that $\rho_n \leq \rho^*$ for all n.
- Therefore,

$$\rho = \lim_{n \to \infty} \mathbb{P}[Z_n = 0] = \lim_{n \to \infty} p_n \le \rho^*.$$

• Finally, since $\rho = \phi(\rho)$, it must be the case that $\rho = \rho^*$.

Thus, we have established the following theorem. \checkmark

• Let $(Z_n)_{n>0}$ be a branching process with $Z_0 = \mathfrak{D}$ and common offspring distribution ξ . 4(0) = Po assumption

• Let
$$\mu = \mathbb{E}[\xi]$$
 and let $\phi(z) = \sum_{k \geq 0} \mathbb{P}[\xi = k] z^k$.

• Suppose that
$$0 < p_0 = \mathbb{P}[\xi = 0] < 1$$
.

- Let ρ be the probability of extinction.
- Then, ρ is the smallest solution of $\phi(z) = z, z \in [0, 1]$. po = 0
- If $\mu \leq 1$, then $\rho = 1$. =) o could be

and in fact p is the smallest pos soln of $\phi(x) = x$ in (0,] • If $\mu > 1$, then $\rho < 1$.

po = (0,1).