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Branching processes

Consider a single bacterium in an ideal environment. We call this the
generation 0 bacterium.

This bacterium gives birth to ξ bacteria, where ξ is a non-negative integer
valued random variable. We call these the generation 1 bacteria.

Generally, let the generation k bacteria be b1, . . . , bk . Then, bi gives birth to
ξi bacteria where ξ1, . . . , ξk are i.i.d. copies of ξ.

What is the probability that the bacteria population goes extinct?

This problem was studied by Galton and Watson in relation to the
propagation of last names in Victorian England.
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Branching processes

Let Zn denote the number of bacteria in generation n and let (ξi,j) denote i.i.d.
copies of ξ. Then,

Z0 = 1,

Z1 = ξ0,1,

Z2 =
∑Z1

i=1 ξ1,i , . . .

Zk =
∑Zk−1

i=1 ξk−1,i .

Note that if Zi = 0 for some i ≥ 1, then Zj = 0 for all j ≥ i . This corresponds to
the extinction of the population.

Formally, we say that 0 is an absorbing state for the process (Zn)n≥0.

Lecture 4 STATS 217 3 / 15



Branching processes

Let Zn denote the number of bacteria in generation n and let (ξi,j) denote i.i.d.
copies of ξ. Then,

Z0 = 1,

Z1 = ξ0,1,

Z2 =
∑Z1

i=1 ξ1,i , . . .

Zk =
∑Zk−1

i=1 ξk−1,i .

Note that if Zi = 0 for some i ≥ 1, then Zj = 0 for all j ≥ i . This corresponds to
the extinction of the population.

Formally, we say that 0 is an absorbing state for the process (Zn)n≥0.

Lecture 4 STATS 217 3 / 15



Branching processes

Let Zn denote the number of bacteria in generation n and let (ξi,j) denote i.i.d.
copies of ξ. Then,

Z0 = 1,

Z1 = ξ0,1,

Z2 =
∑Z1

i=1 ξ1,i , . . .

Zk =
∑Zk−1

i=1 ξk−1,i .

Note that if Zi = 0 for some i ≥ 1, then Zj = 0 for all j ≥ i . This corresponds to
the extinction of the population.

Formally, we say that 0 is an absorbing state for the process (Zn)n≥0.

Lecture 4 STATS 217 3 / 15



Branching processes

Let Zn denote the number of bacteria in generation n and let (ξi,j) denote i.i.d.
copies of ξ. Then,

Z0 = 1,

Z1 = ξ0,1,

Z2 =
∑Z1

i=1 ξ1,i , . . .

Zk =
∑Zk−1

i=1 ξk−1,i .

Note that if Zi = 0 for some i ≥ 1, then Zj = 0 for all j ≥ i . This corresponds to
the extinction of the population.

Formally, we say that 0 is an absorbing state for the process (Zn)n≥0.

Lecture 4 STATS 217 3 / 15



Branching processes

Let Zn denote the number of bacteria in generation n and let (ξi,j) denote i.i.d.
copies of ξ. Then,

Z0 = 1,

Z1 = ξ0,1,

Z2 =
∑Z1

i=1 ξ1,i , . . .

Zk =
∑Zk−1

i=1 ξk−1,i .

Note that if Zi = 0 for some i ≥ 1, then Zj = 0 for all j ≥ i . This corresponds to
the extinction of the population.

Formally, we say that 0 is an absorbing state for the process (Zn)n≥0.

Lecture 4 STATS 217 3 / 15



Branching processes

We have a branching process (Zn)n≥0 with offspring distribution ξ.

We are interested in the probability that the population survives i.e.

P[Zn ≥ 1 ∀n].

Trivial case: Suppose P[ξ ≥ 1] = 1. Then, P[Zn ≥ 1 ∀n] = 1.

Hence, we may assume that for all integers k ≥ 0,

P[ξ = k] =: pk

with 0 < p0 < 1.
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Expected size of generation n

Suppose that µ := E[ξ]. What is the expectation of Zn?

E[Z0] = 1.

E[Z1] = E[ξ0,1] = µ.

E[Z2] = E

[
Z1∑
i=1

ξ1,i

]

=
∑
z≥0

E

[
z∑

i=1

ξi,1

]
P[Z1 = z ]

=
∑
z≥0

zµP[Z1 = z ]

= µ
∑
z≥0

zP[Z1 = z ]

= µ · E[Z1] = µ2.
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Subcritical case

Similarly, E[Zn] = µE[Zn−1] = µn.

This shows that if µ < 1, then with probability 1, the population becomes
extinct.

Indeed, if µ < 1 (this is called the subcritical case), then

P[Zn ≥ 1] ≤ E[Zn] = µn → 0.

What about the case when µ ≥ 1?

If µ = 1, then E[Zn] = 1 and if µ > 1, then E[Zn]→∞, but this doesn’t say
anything about the probability of survival.
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First step analysis

To analyse the case µ ≥ 1, we will use first step analysis.

Let ρ denote the probability that the population eventually dies out so that

ρ = P[Zn = 0 for some n ≥ 1].

Suppose that the bacterium b in generation 0 has k children b1, . . . , bk .
Then, the population dies out if and only if the subpopulations starting at
b1, . . . , bk die out. Moreover, the probability of each of these subpopulations
dying out is also ρ.
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First step analysis

Therefore,

ρ =
∞∑
k=0

P[ξ0,1 = k]ρk =
∞∑
k=0

pkρ
k = φ(ρ),

where

φ(z) :=
∞∑
k=0

pkz
k

is the generating function of (pk)k≥0.

So, we see that the probability of extinction is a fixed point of the generating
function i.e. a solution of

ρ = φ(ρ).
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First step analysis

We saw that the probability of extinction is a solution of

ρ = φ(ρ) =
∑
k≥0

pkρ
k .

Since
φ(1) =

∑
k≥0

pk = 1,

we see that 1 is always a solution of ρ = φ(ρ).

However, this does not mean that the extinction probability is 1, since there
may be other solutions to ρ = φ(ρ).
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Properties of the generating function

Recall that φ(z) =
∑

k≥0 pkz
k .

φ is non-decreasing on [0, 1].

φ is continuous on [0, 1].

φ(0) = p0 ∈ (0, 1).

φ(1) = 1.

φ′(z) =
∑

k≥1 kpkz
k−1.

Hence, φ′(1) =
∑

k≥1 kpk = µ.

φ′′(z) =
∑

k≥2 k(k − 1)pkz
k−2 > 0 for z ∈ (0, 1].

Hence, φ is strictly convex on (0, 1].
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Properties of the generating function

Let g(ρ) = φ(ρ)− ρ. We are interested in the solutions of g(ρ) = 0 for ρ = [0, 1].

We have g(0) = p0 ∈ (0, 1), g(1) = 0.

g ′′(ρ) = φ′′(ρ) > 0 for ρ ∈ (0, 1].

g ′(ρ) = φ′(ρ)− 1.

So, we have two cases:

If φ′(1) ≤ 1, then g ′(1) ≤ 0 and g ′(ρ) < 0 for all ρ ∈ [0, 1). Hence, the only
solution of g(ρ) = 0 is at ρ = 1.
If φ′(1) > 1, then g ′(1) > 0. So, there exists exactly one ρ ∈ (0, 1) such that
g(ρ) = 0.
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Critical case

We know that the extinction probability ρ is a solution of φ(ρ) = ρ.

We also saw that when µ = φ′(1) = 1, this equation has only one solution:
ρ = 1.

Therefore, if µ = 1 (this is called the critical case), we see that ρ = 1.
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Supercritical case

It remains to deal with the case when µ > 1 (this is called the supercritical
case).

In this case, φ(ρ) = ρ has two solutions: ρ∗ < 1 and 1.

We claim that the extinction probability in this case is ρ∗.

To see this, let
ρn = P[Zn = 0].

Then, by first step analysis, we have

ρn =
∑
k≥0

pkρ
k
n−1 = φ(ρn−1).
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To see this, let
ρn = P[Zn = 0].

Then, by first step analysis, we have
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pkρ
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Supercritical case

We have ρn = φ(ρn−1).

Since φ is a non-decreasing function, ρ0 ≤ ρ1 ≤ ρ2 ≤ ....

Since ρ0 ≤ ρ∗, it follows that

ρ1 = φ(ρ0) ≤ φ(ρ∗) = ρ∗.

Iterating this shows that ρn ≤ ρ∗ for all n.

Therefore,
ρ = lim

n→∞
P[Zn = 0] = lim

n→∞
pn ≤ ρ∗.

Finally, since ρ = φ(ρ), it must be the case that ρ = ρ∗.
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Summary

Thus, we have established the following theorem.

Let (Zn)n≥0 be a branching process with Z0 = 0 and common offspring
distribution ξ.

Let µ = E[ξ] and let φ(z) =
∑

k≥0 P[ξ = k]zk .

Suppose that 0 < p0 = P[ξ = 0] < 1.

Let ρ be the probability of extinction.

Then, ρ is the smallest solution of φ(z) = z , z ∈ [0, 1].

If µ ≤ 1, then ρ = 1.

If µ > 1, then ρ < 1.
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