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Branching processes

o Consider a single bacterium in an ideal environment. We call this the
generation 0 bacterium.

@ This bacterium gives birth to & bacteria, where £ is a non-negative integer
valued random variable. We call these the generation 1 bacteria.
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Branching processes

o Consider a single bacterium in an ideal environment. We call this the
generation 0 bacterium.
@ This bacterium gives birth to & bacteria, where £ is a non-negative integer
valued random variable. We call these the generation 1 bacteria.
o Generally, let the generation k bacteria be by, ..., b,qg Then, b; gives birth to
&; bacteria where &1, ..., &, are i.i.d. copies of &. s 1Y
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Branching processes

o Consider a single bacterium in an ideal environment. We call this the
generation 0 bacterium.

@ This bacterium gives birth to & bacteria, where £ is a non-negative integer
valued random variable. We call these the generation 1 bacteria.

o Generally, let the generation k bacteria be by, ..., bx. Then, b; gives birth to
&; bacteria where &1, ..., &, are i.i.d. copies of &.

@ What is the probability that the bacteria population goes extinct?
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Branching processes

o Consider a single bacterium in an ideal environment. We call this the
generation 0 bacterium.

@ This bacterium gives birth to & bacteria, where £ is a non-negative integer
valued random variable. We call these the generation 1 bacteria.

o Generally, let the generation k bacteria be by, ..., bx. Then, b; gives birth to
&; bacteria where &1, ..., &, are i.i.d. copies of &.

@ What is the probability that the bacteria population goes extinct?

@ This problem was studied by Galton and Watson in relation to the
propagation of last names in Victorian England.
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Branching processes

Let Z, denote the number of bacteria in generation n and let (&; ;) denote i.i.d.
copies of £&. Then,
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Branching processes

Let Z, denote the number of bacteria in generation n and let (&; ;) denote i.i.d.
copies of £&. Then,

("] ZO = 1,
e 41 =%&1,
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Branching processes

Let Z, denote the number of bacteria in generation n and let (&; ;) denote i.i.d.

copies of £&. Then, .
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Branching processes

Let Z, denote the number of bacteria in generation n and let (&; ;) denote i.i.d.
copies of £&. Then,

("] ZO = 1,
e 41 =%&1,
(] 22 = 2’2;1 617;,

Zy_
e 7, = Z:,':k11 €k71,i-

Note that if Z; = 0 for some i > 1, then Z; = 0 for all j > i. This corresponds to
the extinction of the population.
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Branching processes

Let Z, denote the number of bacteria in generation n and let (&; ;) denote i.i.d.
copies of £&. Then,

("] ZO = 1,
e 41 =%&1,
(] 22 = 2’2;1 617;,

Zy_
e 7, = Z:,':k11 €k71,i-

Note that if Z; = 0 for some i > 1, then Z; = 0 for all j > i. This corresponds to
the extinction of the population.

Formally, we say that 0 is an absorbing state for the process (Z,),>0.
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Branching processes

@ We have a branching process (Z,)n>0 with offspring distribution &.
@ We are interested in the probability that the population survives i.e.

P[Z,>1 Vn).
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Branching processes

@ We have a branching process (Z,)n>0 with offspring distribution &.
@ We are interested in the probability that the population survives i.e.

P[Z,>1 Vn).

@ Trivial case: Suppose P[¢ > 1] =1. Then, P[Z, >1 Vn]=1.
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Branching processes

@ We have a branching process (Z,)n>0 with offspring distribution &.
@ We are interested in the probability that the population survives i.e.

P[Z,>1 Vn).

@ Trivial case: Suppose P[¢ > 1] =1. Then, P[Z, >1 Vn]=1.

@ Hence, we may assume that for all integers k > 0,
P[§ = k] =: p«

with 0 < pg < 1.
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Expected size of generation n

Suppose that p := E[¢]. What is the expectation of Z,?
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Expected size of generation n

Suppose that p := E[¢]. What is the expectation of Z,?
o E[Z] = 1.
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Expected size of generation n

Suppose that p := E[¢]. What is the expectation of Z,?
o E[Z] = 1.
o E[Z] =E[{o.1] = p.
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Expected size of generation n

Suppose that p := E[¢]. What is the expectation of Z,?

o E[Z)] = 1.
o B[Zi] = E[éoa] = 1.
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Expected size of generation n

Suppose that p := E[¢]. What is the expectation of Z,?

o E[Z)] = 1.
o B[Zi] = E[éoa] = 1.

E[Z] = E

Z;

Zfl,,-]
i=1

=Y E|> &

2z>0 i=1

P[Zl = Z]

= Z zuP[Zy = 2]

z>0

= ,uZz]P’[Zl =Z]

z>0
= pn-E[z] = p?.
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Subcritical case

B& n daeRve \«] ‘\M‘H\ ens

o Similarly, E[Z,] = uE[Z,—1] = u".
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Subcritical case

e Similarly, E[Z,] = uE[Z,—1] = u".
@ This shows that if u < 1, then with probability 1, the population becomes
extinct.
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Subcritical case

e Similarly, E[Z,] = uE[Z,—1] = u".
@ This shows that if u < 1, then with probability 1, the population becomes
extinct.

@ Indeed, if u < 1 (this is called the subcritical case), then

P[Z, > 1] <E[Z,] = p" — 0.
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Subcritical case

Similarly, E[Z,] = pE[Z,—1] = p".
@ This shows that if u < 1, then with probability 1, the population becomes
extinct.

Indeed, if ;1 < 1 (this is called the subcritical case), then

P[Z, > 1] <E[Z,] = p" — 0.

What about the case when p > 17

If £ =1, then E[Z,] =1 and if u > 1, then E[Z,] — oo, but this doesn’t say
anything about the probability of survival.
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First step analysis

@ To analyse the case p > 1, we will use first step analysis.
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First step analysis

@ To analyse the case p > 1, we will use first step analysis.
@ Let p denote the probability that the population eventually dies out so that

Op =P[Z, = 0 for some n > 1].
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First step analysis

@ To analyse the case p > 1, we will use first step analysis.
@ Let p denote the probability that the population eventually dies out so that

p =P[Z, =0 for some n > 1].

@ Suppose that the bacterium b in generation 0 has k children by, ..., by.
Then, the population dies out if and only if the subpopulations starting at
by, ..., by die out. Moreover, the probability of each of these subpopulations
dying out is also p.

VALD fgx'f\'(\ te |} 2= k] - CK
(by depardanee oF
a S\,Jopopux\a’f\‘ﬂ‘"j

SIS B D



First step analysis

exhoehom 2= )
o Therefore, ﬁ)_(’l\‘- )‘-\ / @. ( ‘
o0 N\/\ oan o0
p= Pléor=Kp* = pr* = d(p)
where

z)—Zpkz S \T—[—ix-[
R(x=1l2 Pre

is the generating function of (px)«>o0.

SIS B TS



|
First step analysis

@ Therefore,
p=> Pléor = klp* = pur* = o(p),
k=0 k=0

where

[oe]
#(2) = puz®

k=0

is the generating function of (px)«>o0.

@ So, we see that the probability of extinction is a fixed point of the generating
function i.e. a solution of

p = d(p)-
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First step analysis

@ We saw that the probability of extinction is a solution of

: p=0(p) = pip*.
O‘\QT\- ’ k>0
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First step analysis

@ We saw that the probability of extinction is a solution of

p=0(p) = pr*.

k>0

@ Since

$(1) = p=1,

k>0

we see that 1 is always a solution of p = ¢(p).
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First step analysis

@ We saw that the probability of extinction is a solution of

k we ‘Il see
p=0(p) = ;pkp : Hor & looks
) (ke
@ Since |
¢(1)=> p=1, T
k>0 Po 8
we see that 1 is always a solution of p = ¢(p). a

@ However, this does not mean that the extinction probability is 1, since there
may be other solutions to p = ¢(p).
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Properties of the generating function

Recall that ¢(z) = =~ Pkz*.
@ ¢ is non-decreasing on [0,1]. - ‘?V— 20
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Properties of the generating function

Recall that ¢(z) = =~ Pkz*.
@ ¢ is non-decreasing on [0, 1].

@ ¢ is continuous on [0, 1].
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Properties of the generating function

Recall that ¢(z) = =~ Pkz*.

x
=

@ ¢ is non-decreasing on [0, 1]. c\aLD\ = A T’k o

@ ¢ is continuous on [0, 1]. k20 Oo =1

° $(0)=po € (0,1). oN= 0 ¥n7t
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Properties of the generating function

Recall that ¢(z) = >, < pez¥.
@ ¢is non—decreasing on [0,1].
@ ¢ is continuous on [0, 1].
e ¢(0) =po €(0,1).
o p(1)=1.
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Properties of the generating function

Recall that ¢(z) = >, < pez¥.
@ ¢is non—decreasing on [0,1].
@ ¢ is continuous on [0, 1].
e ¢(0) =po €(0,1).
o p(1)=1.
° ¢'(2) =X i1 kprzk 1.
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Properties of the generating function

Recall that ¢(z) = >, < pez¥.
@ ¢is non—decreasiné on [0,1].
@ ¢ is continuous on [0, 1].
e ¢(0) =po €(0,1).
o p(1)=1.
° ¢'(2) =X i1 kprzk 1.
o Hence, ¢'(1) =3, ~; kpk = 1.
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Properties of the generating function

Po+ Tpe 2!
Recall that ¢(z) = 3,0 puz®. P24

@ ¢ is non-decreasing on [0, 1].

@ ¢ is continuous on [0, 1]. ’
® ¢(0) = po EV(\%) «— \\& agsymprien fo =% - =
° (1) =1.

° ¢'(2) = Xpor k2"

@ Hence, ¢'(1) = Zk>1 kpy, =

0 ¢"(2) = > >0 k(k — )szk 2> 0 for z € (0,1].
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Properties of the generating function

Recall that ¢(z) = >, < pez¥.
@ ¢is non—decreasiné on [0,1].
@ ¢ is continuous on [0, 1].
e ¢(0) =po €(0,1).
o p(1)=1.
° ¢'(2) = Xpor k2"
@ Hence, gi)’(l)_: D ks1 kpk =
0 ¢"(z) = Yyso k(k — )szk 2> 0 for z € (0,1].
@ Hence, ¢ is strictly convex on (0, 1].
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Properties of the generating function

Let g(p) = ¢(p) — p. We are interested in the solutions of g(p) = 0 for p = [0, 1].

SIS B Y



Properties of the generating function

Let g(p) = ¢(p) — p. We are interested in the solutions of g(p) = 0 for p = [0, 1]
o We have g(0) = po € (0,1), g(1) =0.
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Properties of the generating function

Let g(p) = ¢(p) — p. We are interested in the solutions of g(p) = 0 for p = [0, 1].
e We have g(0) = po € (0,1), g(1) = 0.
o g"(p) =¢"(p) >0 for p € (0,1].
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Properties of the generating function

Let g(p) = ¢(p) — p. We are interested in the solutions of g(p) = 0 for p = [0, 1].
e We have g(0) = po € (0,1), g(1) = 0.
o g"(p) =¢"(p) >0 for p € (0,1].
° g'(p)=¢'(p) - 1.

SIS B Y



|
Properties of the generating function

Let g(p) = ¢(p) — p. We are interested in the solutions of g(p) = 0 for p = [0, 1].
e We have g(0) = po € (0,1), g(1) = 0.
e g"(p)=¢"(p) >0 for p € (0,1]. ﬂc’(\p,’& —) in AR,
o g'(p)=¢'(p) — 1. 3 nro
@ So, we have two cases:
o If ¢'(1) <1, then g'(1) < 0 and g'(p) < 0 for all p € [0,1). Hence, the only

solution of g(p) =0is at p=1.
éJu =1 3 = @l -4
gl 8= ¢ (-1 = opm-a
- Mm-4 =0
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Properties of the generating function
c\>q?)= P& ) -p- 0
N\~
(p)
Let g(p) = ¢(p) — p. We are interested in the solutions of g(p) = 0 for p = [0, 1].
e We have g(0) = pp € (0,1), g(1) =0.
o g"(p) =¢"(p) >0 for p € (0,1].
° g'(p)=¢'(p) - 1.
@ So, we have two cases:
o If ¢'(1) <1, then g'(1) < 0 and g'(p) < 0 for all p € [0,1). Hence, the only

solution of g(p) =0is at p=1.
o If ¢/(1) > 1, then g’(1) > 0. So, there exists exactly one p € (0,1) such that

g(p) = 0. e two cases
0) -4 only one ook
Pe 0_, g jo& (,:1
460 (2] JAPA T Awo cofunowns
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Critical case

@ We know that the extinction probability p is a solution of ¢(p) = p.

soheph cole ! pxncion b = 4
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Critical case

@ We know that the extinction probability p is a solution of ¢(p) = p.

@ We also saw that when p = ¢/(1) = 1, this equation has only one solution:
p=1
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Critical case

@ We know that the extinction probability p is a solution of ¢(p) = p.

@ We also saw that when p = ¢/(1) = 1, this equation has only one solution:
p=1

@ Therefore, if 1 =1 (this is called the critical case), we see that p = 1.
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Supercritical case

@ It remains to deal with the case when p > 1 (this is called the supercritical

case).

fa
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Supercritical case

@ It remains to deal with the case when p > 1 (this is called the supercritical
case).
@ In this case, ¢(p) = p has two solutions: p* < 1 and 1.

@ We claim that the extinction probability in this case is p*.

()'h'- R[20=0 come v<n ]

J‘m\': = Z\ Q.:_\ fe = d)(f”‘")
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Supercritical case

@ It remains to deal with the case when p > 1 (this is called the supercritical
case).

@ In this case, ¢(p) = p has two solutions: p* < 1 and 1.
@ We claim that the extinction probability in this case is p*.

@ To see this, let
pn =P[Z, =0].
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Supercritical case

@ It remains to deal with the case when p > 1 (this is called the supercritical
case).

In this case, ¢(p) = p has two solutions: p* < 1 and 1.
We claim that the extinction probability in this case is p*.

To see this, let

pn =P[Z, =0].

Then, by first step analysis, we have

Pn = Z Pkpﬁfl = ¢(pn71)~

k>0
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Supercritical case

e We have p, = ¢(pp_1). (o fZL

4
@ Since ¢ is a non-decreasing function, pg < p1 < p2 < ...
(} R
oa— .
i L an = Tpnﬂwh‘“‘l
\(_) ( p\(‘(\(\(»\mf‘ - -
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Supercritical case

ro = P(z,=0T=0
@ We have p, = ¢(pn_1)- (blc Zo0:=14 )
@ Since ¢ is a non-decreasing function, pg < p1 < p2 < ...
@ Since pg < p*, it follows that

:(A/ p1 = d(po) < P(p*) = p*. o*
S
aQ”} (o)
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Supercritical case

o We have p, = ¢(pn—1).
@ Since ¢ is a non-decreasing function, pg < p1 < p2 <
@ Since pg < p*, it follows that

p1 = d(po) < d(p") = p".

1) W
@ lterating this shows that p, < p* for all n. ;{_ () s (;)G
(3) {% A Chr Show ok 4
(’ = (7 ¥ (2) \‘{L ng Can Show

Ao Wil be done -
o = f < r” ( K ow 4?\\"‘)
on horn sideS

V = (;* Anen WM
(L\'\ W N e done -
fow keop ¢
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Supercritical case

We have p, = ¢(pn-1)-
Since ¢ is a non-decreasing function, py < p1 < po < ...

Since pg < p*, it follows that

p1 = d(po) < d(p") = p".

Iterating this shows that p, < p* for all n.

Therefore,
p= lim P[Z,=0]= lim p, <p".
n—oo n—oo
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Supercritical case

We have p, = ¢(pn-1)-
Since ¢ is a non-decreasing function, py < p1 < po < ...

Since pg < p*, it follows that

p1 = d(po) < d(p") = p".

@ lterating this shows that p, < p* for all n.
@ Therefore,
p= lim P[Z,=0]= lim p, <p".
n— o0 n— o0
e Finally, since p = ¢(p), it must be the case that p = p*.
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Summary

Thus, we have established the following theorem. 4

o Let (Z,)n>0 be a branching process with Zy =4) and common offspring
distribution &.

Let p1 = E[¢] and let ¢(z) = 5o P[¢ = k]2~ & (0) = o

(]

@ Suppose that 0 < pp =P[¢ =0] < 1. 0S¢ uN‘pW"""

@ Let p be the probability of extinction. ]% = (o,1).

@ Then, p is the smallest solution of ¢(z) = z, z € [0, 1]. fo =0

o If £ <1, then p=1. - o cowld bal
a So'n-

oIfu>1,thenp<L1/.\ opd in ‘Poct
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