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The Poisson Point Process

We now begin our study of the Poisson Point Process (PPP) which is widely
used as a (simplified) model for events such as

@ time of occurrence of earthquakes,
time of occurrence of accidents,
starting time of telephone calls,

time at which a new customer joins a queue at a bank,

and many more...

The PPP will also play a crucial role in our discussion of continuous time Markov
chains later in the course.
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Exponential distribution
@ Let A > 0. X is said to be exponentially distributed with rate )\, which we
will denote by X ~ Exp(}) if
P(X <x)=1-e™ V¥x>0.
o Equivalently, letting fx(x) denote the pdf (probability density function) of X,

de= M for x>0
fe(x) = =0,
x() {0 for x < 0.

@ Observe that Exp(\) ~ Exp(1)/A. Indeed, for all x > 0,
P(Exp(1)/A < x) = P(Exp(1) < Ax) =1 — e~ = P(Exp(}) < x).

@ Using direct computation, one can check that for X ~ Exp(})
E[X"] = nl/A",
so that
E[Exp(A)] = A~ Var[Exp(\)] = A2
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Memorylessness of exponential distribution

Let X ~ Exp(A). Then, for any t,s > 0,
PX>t+s|X>t]=P[X >s]

In words, if “waiting time" is exponentially distributed, then the probability of

waiting for s more units of time doesn't depend on how long we've already waited.
Indeed,

PX >t+s] e et
PX>t+s|X>t]= [IP’[X>t]]: P =e M =P[X > s

@ In fact, the exponential distribution is the unique continuous memoryless
distribution.

@ The only discrete memoryless distribution is the geometric distribution.
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Sum of iid exponential random variables

Let Xi,...,X, be iid Exp(1). What is the pdf of X; +--- + X,,?
e n=1: fx(x)=e*.

e n=2:

s (x) = / () (x — y)dy = / e Ve Ny = xe .

e n=3:

X X2
fX1+X2+X3(X) :/fX1+X2(y)fX3(X_y)dy :/ ye_Xdy = ?e—x.
0

@ Similarly, by induction,

e, (X) = €
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Sum of iid exponential random variables

e Let Xi,...,X, beiid Exp(1). Then, fx,4..ix (x)=e > -x""1/(n— 1)
e What about Xi,..., X, iid Exp(\)?

o Using fs/x(x) = Ms(Ax), we get

o Ax n—1
Pt X, (X) = Ae ™ E” _) 1

which is the pdf of the Gamma(n, \) distribution.
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).
@ What can we say about the distribution of X7
o X ~ Exp(A1+ -+ Ap). Indeed, for all t >0,

PX > t] =P[X; > t,..., X, > t] = [[PIX; > ]
i=1
n
_ H e Nt — o= (At At

i=1
=P[Exp(A1 + -+ X)) > t].

@ On the homework, you will explore max(Xi, ..., X,).
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Exponential races

Let X; ~ Exp(A1), ..., X, ~ Exp(A,) be independent. Let X := min(Xy,...,X,).
o What is the probability that X = min(Xy,..., X,) = X1?

e n=2
P[Xl = min(Xl,Xz)] = P[Xz Z Xl] = Am P[Xz Z X]fXI(X)dX

e A
—>\2X —)\1X 1

= e - A1€ dx = .
/o ' AL+ A2

@ For general n, use X = min(Xy, ..., X,) = min(Xy, min(Xz,...,X,)) and
min(Xa, ..., X,) ~ Exp(A2 + - -+ A,) to get

. A
P[X1 = min(Xy,..., X,)] = )\14_71”
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Poisson distribution

@ Let 4 > 0. X is said to have Poisson distribution with parameter p, which
we will denote by X ~ Pois(u) if

W
PX =j] = e“‘-_—I Vji=0,1,2,...
J!
o Poisson approximation of the Binomial distribution:

P[Pois(u) =J] = lim B[Bin(n, /n) = j].

@ Why? For any fixed j =0,1,...,
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Poisson distribution

Using this intuition, we see that

o E[Pois(u)] = limy— o0 E[Bin(n, p/n)] = p.
e Var(Pois(p)) = limp_,o0 Var(Bin(n, 11/n)) = limpoe n- & (1 — £) = .
@ For all t € R,

E[etX] — lim E[etz’f;l Ber,—(u/n)] = lim E[etBer(;t/n)]n
n—oo n—oo

= lim (14 (et - 1))"

n— o0

— eile=1)

@ As practice, you should prove these results directly using the pdf of the
Poisson distribution.
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Sum of independent Poisson random variables

Let X; ~ Pois(A1), ..., Xk ~ Pois(\) be independent.

@ How is Xi + --- + X distributed?

@ From the connection between the Poisson distribution and Binomial limits, it
is clear that
X1+ + X~ POiS()\l—i-"'—F)\k).

o Exercise: Show this directly using the pdf of the Poisson distribution.
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Connection between exponential and Poisson distributions

Let Wy, Ws, ... be independent Exp(1) random variables. Let Wy = 0.

You should think of W; as waiting times i.e. W is the time you wait before
the first event happens, W, is the time you wait between the first and second
event, and so on.

@ Fort >0, let

N(t) =max{i: Wy +---+ W; <t}

So, N(t) denotes the number of events that happen by time ¢.
In particular, N(0) = 0.
It turns out that for all t > 0,

N(t) ~ Pois(t).
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Connection between exponential and Poisson distributions

e For all t > 0, N(t) ~ Pois(t). Why?
e Forany >0,

PIN(t) =] =P[Wi + -+ W, < t < Wy + -+ W+ W]

t
— [ s (B > £~ sl
0

' s" ! (t-s)
= -s. e t=s
*/o < (n—l)!) ¢

eit ! n—1
_(n—l)!/o s""*ds

Lt

n!
= P[Pois(t) = Jj].
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Connection between exponential and Poisson distributions

For t >0, let N(t) = max{i: Wi +---+ W; < t}.
o We saw that N(t) ~ Pois(t).
@ We also have for any 0 < s < t that
N(t) — N(s) and {N(u)}o<u<s are independent.

@ Why? This follows from the memorylessness property of the exponential
distribution.
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Connection between exponential and Poisson distributions

For any 0 < s < t that

N(t) — N(s) and {N(u)}o<u<s are independent.

@ Suppose N(s) = k and the arrival times before s are 0 < t; <--- < t; <s.
@ This just means that Wy = t;, Wi + Wh =t ... , Wi + - - - + W) = t.
@ Since N(s) = k, we must have W1 > s — t.

@ But by the memorylessness property of the exponential distribution

P[Wk+1 >Ss—t+t | Wiy > s — tk] = P[Wk+1 > t] =e

@ So, the waiting times for arrivals after s are iid Exp(1) random variables
which are independent of {N(u)}o<u<s.
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