
STATS 217: Introduction to Stochastic Processes I

Lecture 5
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The Poisson Point Process

We now begin our study of the Poisson Point Process (PPP) which is widely
used as a (simplified) model for events such as

time of occurrence of earthquakes,

time of occurrence of accidents,

starting time of telephone calls,

time at which a new customer joins a queue at a bank,

and many more...

The PPP will also play a crucial role in our discussion of continuous time Markov
chains later in the course.

Lecture 5 STATS 217 2 / 15



Exponential distribution

Let λ > 0. X is said to be exponentially distributed with rate λ, which we
will denote by X ∼ Exp(λ) if

P(X ≤ x) = 1− e−λx ∀x ≥ 0.

Equivalently, letting fX (x) denote the pdf (probability density function) of X ,

fX (x) =

{
λe−λx for x ≥ 0,

0 for x < 0.

Observe that Exp(λ) ∼ Exp(1)/λ. Indeed, for all x ≥ 0,

P(Exp(1)/λ ≤ x) = P(Exp(1) ≤ λx) = 1− e−λx = P(Exp(λ) ≤ x).

Using direct computation, one can check that for X ∼ Exp(λ)

E[X n] = n!/λn,

so that

E[Exp(λ)] = λ−1 Var[Exp(λ)] = λ−2.
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Memorylessness of exponential distribution

Let X ∼ Exp(λ). Then, for any t, s ≥ 0,

P[X > t + s | X > t] = P[X > s].

In words, if “waiting time” is exponentially distributed, then the probability of
waiting for s more units of time doesn’t depend on how long we’ve already waited.

Indeed,

P[X > t + s | X > t] =
P[X > t + s]

P[X > t]
=

e−λ(t+s)

e−λs
= e−λs = P[X > s].

In fact, the exponential distribution is the unique continuous memoryless
distribution.

The only discrete memoryless distribution is the geometric distribution.
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Sum of iid exponential random variables

Let X1, . . . ,Xn be iid Exp(1). What is the pdf of X1 + · · ·+ Xn?

n = 1: fX1(x) = e−x .

n = 2:

fX1+X2(x) =

∫
fX1(y)fX2(x − y)dy =

∫ x

0

e−ye−(x−y)dy = xe−x .

n = 3:

fX1+X2+X3(x) =

∫
fX1+X2(y)fX3(x − y)dy =

∫ x

0

ye−xdy =
x2

2
e−x .

Similarly, by induction,

fX1+···+Xn(x) = e−x · xn−1

(n − 1)!
.
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Sum of iid exponential random variables

Let X1, . . . ,Xn be iid Exp(1). Then, fX1+···+Xn(x) = e−x · xn−1/(n − 1)!.

What about X1, . . . ,Xn iid Exp(λ)?

Using fS/λ(x) = λfS(λx), we get

fX1+···+Xn(x) = λe−λx · (λx)n−1

(n − 1)!
,

which is the pdf of the Gamma(n, λ) distribution.
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Minimum of independent exponentials

Let X1 ∼ Exp(λ1), . . . ,Xn ∼ Exp(λn) be independent. Let X := min(X1, . . . ,Xn).

What can we say about the distribution of X?

X ∼ Exp(λ1 + · · ·+ λn). Indeed, for all t ≥ 0,

P[X ≥ t] = P[X1 ≥ t, . . . ,Xn ≥ t] =
n∏

i=1

P[Xi ≥ t]

=
n∏

i=1

e−λi t = e−(λ1+···+λn)t

= P[Exp(λ1 + · · ·+ λn) ≥ t].

On the homework, you will explore max(X1, . . . ,Xn).
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Exponential races

Let X1 ∼ Exp(λ1), . . . ,Xn ∼ Exp(λn) be independent. Let X := min(X1, . . . ,Xn).

What is the probability that X = min(X1, . . . ,Xn) = X1?

n = 2:

P[X1 = min(X1,X2)] = P[X2 ≥ X1] =

∫ ∞
0

P[X2 ≥ x ]fX1(x)dx

=

∫ ∞
0

e−λ2x · λ1e−λ1xdx =
λ1

λ1 + λ2
.

For general n, use X = min(X1, . . . ,Xn) = min(X1,min(X2, . . . ,Xn)) and
min(X2, . . . ,Xn) ∼ Exp(λ2 + · · ·+ λn) to get

P[X1 = min(X1, . . . ,Xn)] =
λ1

λ1 + · · ·+ λn
.
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Poisson distribution

Let µ > 0. X is said to have Poisson distribution with parameter µ, which
we will denote by X ∼ Pois(µ) if

P[X = j ] = e−µ · µ
j

j!
∀j = 0, 1, 2, . . .

Poisson approximation of the Binomial distribution:

P[Pois(µ) = j ] = lim
n→∞

P[Bin(n, µ/n) = j ].

Why? For any fixed j = 0, 1, . . . ,

P[Bin(n, µ/n) = j ] =

(
n

j

)(µ
n

)j (
1− µ

n

)n−j
=

((
1− µ

n

)n
· µ

j

j!

)
· n!

nj · (n − j)!
·
(

1− µ

n

)−j
→ e−µ · µ

j

j!
.
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Poisson distribution

Using this intuition, we see that

E[Pois(µ)] = limn→∞ E[Bin(n, µ/n)] = µ.

Var(Pois(µ)) = limn→∞ Var(Bin(n, µ/n)) = limn→∞ n · µn
(
1− µ

n

)
= µ.

For all t ∈ R,

E[etX ] = lim
n→∞

E[et
∑n

i=1 Beri (µ/n)] = lim
n→∞

E[et Ber(µ/n)]n

= lim
n→∞

(
1 +

µ

n
(et − 1)

)n
= eµ(e

t−1).

As practice, you should prove these results directly using the pdf of the
Poisson distribution.
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Sum of independent Poisson random variables

Let X1 ∼ Pois(λ1), . . . ,Xk ∼ Pois(λk) be independent.

How is X1 + · · ·+ Xk distributed?

From the connection between the Poisson distribution and Binomial limits, it
is clear that

X1 + · · ·+ Xk ∼ Pois(λ1 + · · ·+ λk).

Exercise: Show this directly using the pdf of the Poisson distribution.
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Connection between exponential and Poisson distributions

Let W1,W2, . . . be independent Exp(1) random variables. Let W0 = 0.

You should think of Wi as waiting times i.e. W1 is the time you wait before
the first event happens, W2 is the time you wait between the first and second
event, and so on.

For t ≥ 0, let
N(t) = max{i : W1 + · · ·+ Wi ≤ t}.

So, N(t) denotes the number of events that happen by time t.

In particular, N(0) = 0.

It turns out that for all t ≥ 0,

N(t) ∼ Pois(t).
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Connection between exponential and Poisson distributions

For all t ≥ 0, N(t) ∼ Pois(t). Why?

For any j ≥ 0,

P[N(t) = j ] = P[W1 + · · ·+ Wj ≤ t <W1 + · · ·+ Wj + Wj+1]

=

∫ t

0

fW1+···+Wj (s)P[Wj+1 > t − s]ds

=

∫ t

0

(
e−s · sn−1

(n − 1)!

)
· e−(t−s)ds

=
e−t

(n − 1)!

∫ t

0

sn−1ds

= e−t · t
n

n!
= P[Pois(t) = j ].
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Connection between exponential and Poisson distributions

For t ≥ 0, let N(t) = max{i : W1 + · · ·+ Wi ≤ t}.

We saw that N(t) ∼ Pois(t).

We also have for any 0 ≤ s < t that

N(t)− N(s) and {N(u)}0≤u≤s are independent.

Why? This follows from the memorylessness property of the exponential
distribution.
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Connection between exponential and Poisson distributions

For any 0 ≤ s < t that

N(t)− N(s) and {N(u)}0≤u≤s are independent.

Suppose N(s) = k and the arrival times before s are 0 ≤ t1 ≤ · · · ≤ tk ≤ s.

This just means that W1 = t1,W1 + W2 = t2, . . . ,W1 + · · ·+ Wk = tk .

Since N(s) = k, we must have Wk+1 ≥ s − tk .

But by the memorylessness property of the exponential distribution

P[Wk+1 > s − tk + t |Wk+1 > s − tk ] = P[Wk+1 > t] = e−t .

So, the waiting times for arrivals after s are iid Exp(1) random variables
which are independent of {N(u)}0≤u≤s .
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