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The Poisson Point Process

C\ho(\’rep- 2 0@ = 0S?.
We now begin our study of the Poisson Point Process (PPP) which is widely
used as a (simplified) model for events such as
@ time of occurrence of earthquakes,
@ time of occurrence of accidents,
@ starting time of telephone calls,
@ time at which a new customer joins a queue at a bank,

@ and many more...

The PPP will also play a crucial role in our discussion of continuous time Markov
chains later in the course.
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Exponential distribution
@ Let A > 0. X is said to be exponentially distributed with rate )\, which we
will denote by X ~ Exp(}) if
#CO)F PX<x)=1-—e™ V¥x>0.
N\
o Equivalently, letting fx(x) denote the pdf (probability density function) of X,

"’C._/c\m: e for x > 0,
9 (%7 x) ) = {

for x < 0.
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Exponential distribution
@ Let A > 0. X is said to be exponentially distributed with rate )\, which we
will denote by X ~ Exp(}) if
P(X <x)=1-e™ V¥x>0.
o Equivalently, letting fx(x) denote the pdf (probability density function) of X,
e M forx >0
f; = =
x() {0 for x < 0.

_— > camn e
@ Observe that Exp(\) ~ Exp(l)/)\.j LYS ’\Z\\‘es-\-P-L'f»M’i"O'V"

D (exp®) =) - P (Explt) = Ax)
'/{ - 4 ._e- }\x: Q(EX‘{’(!”
a "

SIS B T



|
Exponential distribution

@ Let A > 0. X is said to be exponentially distributed with rate )\, which we
will denote by X ~ Exp(}) if
P(X <x)=1-e™ V¥x>0.
o Equivalently, letting fx(x) denote the pdf (probability density function) of X,

de= M for x>0
fe(x) = =0,
x() {0 for x < 0.

@ Observe that Exp(\) ~ Exp(1)/A. Indeed, for all x > 0,
P(Exp(1)/A < x) = P(Exp(1) < Ax) =1 — e~ = P(Exp(}) < x).
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Exponential distribution
@ Let A > 0. X is said to be exponentially distributed with rate )\, which we
will denote by X ~ Exp(}) if
P(X <x)=1-e™ V¥x>0.
o Equivalently, letting fx(x) denote the pdf (probability density function) of X,

de= M for x>0
fe(x) = =0,
x() {0 for x < 0.

@ Observe that Exp(\) ~ Exp(1)/A. Indeed, for all x > 0,
P(Exp(1)/A < x) = P(Exp(1) < Ax) =1 — e~ = P(Exp(}) < x).

@ Using direct computation, one can check that for X ~ Exp(})
E[X"] = nl/A", X o~ Ex[’“)
so that \T;_C)('q'-' ’Y\l
E[Exp(A)] = A~ Var[Exp(\)] = A2
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Memorylessness of exponential distribution

Let X ~ Exp(A). Then, for any t,s > 0,
PX>t+s|X>t]=P[X >s]

In words, if “waiting time" is exponentially distributed, then the probability of
waiting for s more units of time doesn't depend on how long we've already waited.

R (y>exs| x>t = @_[—xp{:,L_SQQE\j

S =
\? [x?tj

_ _alexs))

- &yp(~/\§) ' e’xL/\_i)
S @[ x>8T o~ (A
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Memorylessness of exponential distribution

Let X ~ Exp(A). Then, for any t,s > 0,
PX>t+s|X>t]=P[X >s]

In words, if “waiting time" is exponentially distributed, then the probability of

waiting for s more units of time doesn't depend on how long we've already waited.
Indeed,

PX >t+s] e et
PX>t+s|X>t]= [IP’[X>t]]: P =e M =P[X > s
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Memorylessness of exponential distribution

Let X ~ Exp(A). Then, for any t,s > 0,
PX>t+s|X>t]=P[X >s]

In words, if “waiting time" is exponentially distributed, then the probability of

waiting for s more units of time doesn't depend on how long we've already waited.
Indeed,

PX >t+s] e et
PX>t+s|X>t]= [IP’[X>t]]: P =e M =P[X > s

@ In fact, the exponential distribution is the unique continuous memoryless

distribution. _g (%) = Q CX7’C—1
pee) = fre1 )
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Memorylessness of exponential distribution 4 fﬂ = pen?
L) = JC 0"
Let X ~ Exp()A). Then, for any t,s >0,
PX>t+s|X>t]=P[X >s]
In words, if “waiting time" is exponentially distributed, then the probability of
waiting for s more units of time doesn't depend on how long we've already waited.

Indeed,

PX >t+s] e et
PX>t+s|X>t]= [IP’[X>t]]: P =e M =P[X > s

@ In fact, the exponential distribution is the unique continuous memoryless
distribution.

@ The only discrete memoryless distribution is the geometric distribution.
. . J/
v T4 WNUels N . Y ek
a4 Aol dmmer hoole o case
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Sum of iid exponential random variables It wa il

look at

Let Xi,...,X, be iid Exp(1). What is the pdf of X; +--- + X,,? 'H'\:L )
MEneMum

% Q\n\c\n Wne'! sum & minunen
pove nice Clos1d

J(oﬂm S

#  fowm” pnamo AV

% M uvwkr\m\ Avs.
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Sum of iid exponential random variables

Let Xi,...,X, beiid Exp(1). What is the pdf of X; 4+ --- + X,,?

e n=1: fx(x)=e*.
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Sum of iid exponential random variables

Let Xi,...,X, beiid Exp(1). What is the pdf of X; 4+ --- + X,,?

e n=1: fx(x)=e*.

e n=2:

PV VVAVAVAV.§ x
fX1+X2(X) = /fX1 y)fXQ(Xfy dy:/o eiyei(X7y)dy = xe .

Conin owms M\Mvi 0#—

) - X =%V )
Q@ (xam=-x) = Z \Q(v(,_:pﬁ(t a

d
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Sum of iid exponential random variables

Let Xi,...,X, beiid Exp(1). What is the pdf of X; 4+ --- + X,,?

e n=1: fx(x)=e*.

e n=2:
fX1+X2(X):/fX1(Y)fX2(X7}/)dy:/ eiyei(xiy)dy:)(efx_
0
e n=23: X4 Yo +X¢ = (‘)/\4-)(,_) &-'Xg

X X2
fX1+X2+X3(X) :/fX1+X2(y)fX3(X_y)dy :/ ye_Xdy = ?e—x.
0
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Sum of iid exponential random variables

Let Xi,...,X, be iid Exp(1). What is the pdf of X; +--- + X,,?
e n=1: fx(x)=e*.

e n=2:

s (x) = / () (x — y)dy = / e Ve Ny = xe .

e n=3:

X X2
fX1+X2+X3(X) :/fX1+X2(y)fX3(X_y)dy :/ ye_Xdy = ?e—x.
0

@ Similarly, by induction,

e, (X) = €
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Sum of iid exponential random variables

e Let Xi,...,X, beiid Exp(1). Then, fx,4..ix (x)=e > -x""1/(n— 1)
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Sum of iid exponential random variables

e Let Xi,...,X, beiid Exp(1). Then, fx,4..ix (x)=e > -x""1/(n— 1)

e What about Xi,..., X, iid Exp(\)?
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Sum of iid exponential random variables

e Let Xi,...,X, beiid Exp(1). Then, fx,4..ix (x)=e > -x""1/(n— 1)
e What about Xi, ..., X, iid Exp(A\)? Xy~ Y\/)\ A Ex(’C\)

o Using fs/)\(X) :Afs()\x)’ )(l oo A x‘V‘ ~ \(‘ X ~—- ff\{V\
_

2
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Sum of iid exponential random variables

e Let Xi,...,X, beiid Exp(1). Then, fx,4..ix (x)=e > -x""1/(n— 1)
e What about Xi,..., X, iid Exp(\)?

o Using fs/x(x) = Ms(Ax), we get

o Ax n—1
Pt X, (X) = Ae ™ E” _) 1

which is the pdf of the Gamma(n, \) distribution.
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).

>(N T:_“XP{/\\*——-A-)H\).
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).
@ What can we say about the distribution of X7
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).
@ What can we say about the distribution of X7
o X ~Exp(A1+ -+ Apn).
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).
@ What can we say about the distribution of X7
o X ~ Exp(A1+ -+ Ap). Indeed, for all t >0,

PX > t] =P[X; > t,..., X, > t] = [[PIX; > ]
i=1
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).
@ What can we say about the distribution of X7
o X ~ Exp(A1+ -+ Ap). Indeed, for all t >0,

PX > t] =P[X; > t,..., X, > t] = [[PIX; > ]
i=1
n
_ H e Nt — o= (At At

i=1
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).
@ What can we say about the distribution of X7
o X ~ Exp(A1+ -+ Ap). Indeed, for all t >0,

PX > t] =P[X; > t,..., X, > t] = [[PIX; > ]
i=1
n
_ H e Nt — o= (At At
i=1
=P[Exp(A1 + -+ Ag) > t].
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Minimum of independent exponentials

Let X; ~ Exp(A1),..., X, ~ Exp(\,) be independent. Let X := min(Xy,...,X,).
@ What can we say about the distribution of X7
o X ~ Exp(A1+ -+ Ap). Indeed, for all t >0,

PX > t] =P[X; > t,..., X, > t] = [[PIX; > ]
i=1
n
_ H e Nt — o= (At At

i=1
=P[Exp(A1 + -+ X)) > t].

@ On the homework, you will explore max(Xi, ..., X,).
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Exponential races

Let X; ~ Exp(A1), ..., X, ~ Exp(A,) be independent. Let X := min(Xy,...,X,).
o What is the probability that X = min(Xy,..., X,) = X1?

= 7

—

Dy+--- * N
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Exponential races

Let X; ~ Exp(A1), ..., X, ~ Exp(A,) be independent. Let X := min(Xy,...,X,).
o What is the probability that X = min(Xy,..., X,) = X1?
°on=2 CD,,,\d;How‘V\j o X
: /,\
P[Xl = min(Xl,Xz)] = P[Xz Z Xl] = / P[Xz Z X]fXI(X)dX
0 / W
e'_hf_,x Ol\al()j °e-
 {x, =x]
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Exponential races

Let X; ~ Exp(A1), ..., X, ~ Exp(A,) be independent. Let X := min(Xy,...,X,).
o What is the probability that X = min(Xy,..., X,) = X1?
o n=2
P[Xl = min(Xl,Xz)] = P[Xz Z Xl] = / P[Xz Z X]fXI(X)dX
0
e A
— —>\2X . A —)\1Xd — 1 .
/0 e 1€ X )\1 +>\2
y A min (X()XL,.,.Y'\)
. ﬁewﬂal ",
N0 i (g ol )
\/\"/\/\»-
axqonenhisl
or & wOW « W ;,_4.._%;\.

wse Hhe case m=2,
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Exponential races

Let X; ~ Exp(A1), ..., X, ~ Exp(A,) be independent. Let X := min(Xy,...,X,).
o What is the probability that X = min(Xy,..., X,) = X1?

e n=2
P[Xl = min(Xl,Xz)] = P[Xz Z Xl] = Am P[Xz Z X]fXI(X)dX

e A
—>\2X —)\1X 1

= e - A1€ dx = .
/o ' AL+ A2

@ For general n, use X = min(Xy, ..., X,) = min(Xy, min(Xz,...,X,)) and
min(Xg, c. ,Xn) ~ Exp()\2 4+ )\n)
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Exponential races

Let X; ~ Exp(A1), ..., X, ~ Exp(A,) be independent. Let X := min(Xy,...,X,).
o What is the probability that X = min(Xy,..., X,) = X1?

e n=2
P[Xl = min(Xl,Xz)] = P[Xz Z Xl] = Am P[Xz Z X]fXI(X)dX

e A
—>\2X —)\1X 1

= e - A1€ dx = .
/o ' AL+ A2

@ For general n, use X = min(Xy, ..., X,) = min(Xy, min(Xz,...,X,)) and
min(Xa, ..., X,) ~ Exp(A2 + - -+ A,) to get

. A
P[X1 = min(Xy,..., X,)] = )\14_71”
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Poisson distribution

@ Let 4 > 0. X is said to have Poisson distribution with parameter p, which
we will denote by X ~ Pois(u) if

j
IP>[X=J']:e—#-5,iI Vj=0,1,2,...
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Poisson distribution

@ Let 4 > 0. X is said to have Poisson distribution with parameter p, which
we will denote by X ~ Pois(u) if

j
P[X:j]:e‘”-% Vj=0,1,2,...

o Poisson approximation of the Binomial distribution: Havnk s{L
P[Pois(i) = j] = lim P[Bin(n, ji/n) =j]. pa 08 Hx,

BYSEE %\‘xed, n S \auje ,J‘ 'S %'xeo' 5'0‘:( 4.
D Boe (e p)= g - L
\lLW‘\\T\) \H (V;)(&:)(\%)
V\—‘i_q e—-ﬂ\_j:\ : Q(fod(/u\= J.Y
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Poisson distribution

@ Let 4 > 0. X is said to have Poisson distribution with parameter p, which
we will denote by X ~ Pois(u) if

W
PX =j] = e“‘-_—I Vji=0,1,2,...
J!
o Poisson approximation of the Binomial distribution:

P[Pois(u) =J] = lim B[Bin(n, /n) = j].

@ Why? For any fixed j =0,1,...,
. . (n M J L p n—j
P[Bin(n,u/n) = 4] = (j) (n) (1 n)
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Poisson distribution

@ Let 4 > 0. X is said to have Poisson distribution with parameter p, which
we will denote by X ~ Pois(u) if

j
szﬂ:ew-% Vj=0,1,2,...

o Poisson approximation of the Binomial distribution:

P[Pois(u) =J] = lim B[Bin(n, /n) = j].

@ Why? For any fixed j = 0,1, ..., nl "("")"("'\PD
P[Bin(n, u/n) = j] = (;’) (%)J (1- %)"‘j -y
. _ 0 r\_ _ I\ ,Uri nl M —j
w03 e (0N 5) e (o))
J{ =. AN (Ve tud

. . \l

“?_ % <§ wri e )

_ [

wx g eX oM 1 —
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Poisson distribution

@ Let 4 > 0. X is said to have Poisson distribution with parameter p, which
we will denote by X ~ Pois(u) if

W
PX =j] = e“‘-_—I Vji=0,1,2,...
J!
o Poisson approximation of the Binomial distribution:

P[Pois(u) =J] = lim B[Bin(n, /n) = j].

@ Why? For any fixed j =0,1,...,
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Poisson distribution
\= (@ cnlr, P)]

':‘Y\r)

Using this intuition, we see that
o E[Pois(u)] = limy— o0 E[Bin(n, p/n)] = p.

" \lm[?o\‘c(),)) 2— koo Vox (8ln ("/M/,\))

"
v VoY (3”(%\)
w

B h.ﬁ(\»{-"_\ — M-
N n
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N
Poisson distribution

Using this intuition, we see that

o E[Pois(u)] = limy— o0 E[Bin(n, p/n)] = p.
e Var(Pois(p)) = limp_,o0 Var(Bin(n, 11/n)) = limpoe n- & (1 — £) = .
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Poisson distribution

Using this intuition, we see that

o E[Pois(u)] = limy— o0 E[Bin(n, p/n)] = p.
e Var(Pois(p)) = limp_,o0 Var(Bin(n, 11/n)) = limpoe n- & (1 — £) = .
@ For all t € R, X~ Po\’s(/u)

E[etX] — lim E[etz’f;l Ber,—(u/n)] = lim E[etBer(p/n)]n
n—oo n—oo

SIS B Y



Poisson distribution

Using this intuition, we see that

o E[Pois(u)] = limy— o0 E[Bin(n, p/n)] = p.
e Var(Pois(p)) = limp_,o0 Var(Bin(n, 11/n)) = limpoe n- & (1 — £) = .
@ For all t € R,

n

E[etX] — lim E[etzle Ber,—(u/n)] = lim E[etBer(p/n)]n
n—oo

n—oo
= lim (1+2(e - 1)
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Poisson distribution

Using this intuition, we see that

o E[Pois(u)] = limy— o0 E[Bin(n, p/n)] = p.
e Var(Pois(p)) = limp_,o0 Var(Bin(n, 11/n)) = limpoe n- & (1 — £) = .
@ For all t € R,

n

E[etX] — lim E[etzle Ber,—(u/n)] = lim E[etBer(p/n)]n
n—oo n—oo
— i Frot — 1))
B n|l>n<:o (1 + n(e 1))

— eile=1)
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Poisson distribution

Using this intuition, we see that

o E[Pois(u)] = limy— o0 E[Bin(n, p/n)] = p.
e Var(Pois(p)) = limp_,o0 Var(Bin(n, 11/n)) = limpoe n- & (1 — £) = .
@ For all t € R,

E[etX] — lim E[etz’f;l Ber,—(u/n)] = lim E[etBer(;t/n)]n
n—oo n—oo

= lim (14 (et - 1))"

n— o0

— eile=1)

@ As practice, you should prove these results directly using the pdf of the
Poisson distribution.
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Sum of independent Poisson random variables

Let X; ~ Pois(A1), ..., Xk ~ Pois(\) be independent.
¥ ou cor checlt ‘F""‘“""‘\\J"
@ How is Xi + --- + X distributed? 3

Roc(d) e Bim (v\/_f\R‘) ~ e (D)o R (2)

n

Obi(?\\)‘\" & ?o‘-'()‘\‘) fLC(’QH'Qd A vnd

N 4 wnes-
s (Bl e (00 e
M v - -
X @ (=17 28
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0 C\(:\Lj = ergher JIL
Sum of independent Poisson ragdom variables n

Let X; ~ Pois(A1), ..., Xk ~ Pois(\) be independent.

@ How is Xi + --- + X distributed?

@ From the connection between the Poisson distribution and Binomial limits, it
is clear that
X1+ + X~ POiS()\l—i-"'—F)\k).

m Bl e Barly) Yo By (hr2e)
n

TN T Py oAk
Q= B -~
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Sum of independent Poisson random variables

N = @L‘((ﬁr_\\)-*ﬁ?zt(%\?—) ,_0%,\_1_),),),,_

Let X; ~ Pois(A1), ..., Xk ~ Pois(\) be independent.
et (3 s ()
@ How is Xy + - - + X, distributed? Nog: M "0 7
T 7
@ From the connection between the Poisson distribution and Binomial limits, it
is clear that

Xl—‘r-”—l—XkNPOiS()\l—i—"'—F)\k).

o Exercise: Show this directly using the pdf of the Poisson distribution.
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Connection between exponential and Poisson distributions

o Let Wy, Whs, ... be independent Exp(1) random variables. Let Wy = 0.

W
— \,NW//\/\/:F«-—L——
+

Tl = = of apeivels l’j

£l ~ Pocs ()

0 rwe k

we Shpped heRE
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Connection between exponential and Poisson distributions

o Let Wy, Whs, ... be independent Exp(1) random variables. Let Wy = 0.

@ You should think of W; as waiting times i.e. W is the time you wait before
the first event happens, W, is the time you wait between the first and second

event, and so on.

12/15
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Connection between exponential and Poisson distributions

o Let Wy, Whs, ... be independent Exp(1) random variables. Let Wy = 0.

@ You should think of W; as waiting times i.e. W is the time you wait before
the first event happens, W, is the time you wait between the first and second

event, and so on.

@ Fort >0, let
N(t) =max{i: Wy +---+ W; <t}
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Connection between exponential and Poisson distributions

Let Wy, Ws, ... be independent Exp(1) random variables. Let Wy = 0.

You should think of W; as waiting times i.e. W is the time you wait before
the first event happens, W, is the time you wait between the first and second
event, and so on.

@ Fort >0, let

N(t) =max{i: Wy +---+ W; <t}

So, N(t) denotes the number of events that happen by time ¢.
In particular, N(0) = 0.
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Connection between exponential and Poisson distributions

Let Wy, Ws, ... be independent Exp(1) random variables. Let Wy = 0.

You should think of W; as waiting times i.e. W is the time you wait before
the first event happens, W, is the time you wait between the first and second
event, and so on.

@ Fort >0, let

N(t) =max{i: Wy +---+ W; <t}

So, N(t) denotes the number of events that happen by time ¢.
In particular, N(0) = 0.
It turns out that for all t > 0,

N(t) ~ Pois(t).
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Connection between exponential and Poisson distributions

e For all t > 0, N(t) ~ Pois(t). Why?
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Connection between exponential and Poisson distributions

e For all t > 0, N(t) ~ Pois(t). Why?

e Forany >0,

PIN(t) =] =P[Wi + -+ W, < t < Wy + -+ W+ W]
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Connection between exponential and Poisson distributions

e For all t > 0, N(t) ~ Pois(t). Why?
e Forany >0,

PIN(t) =] =P[Wi + -+ W, < t < Wy + -+ W+ W]

t
— [ s (B > £~ sl
0
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Connection between exponential and Poisson distributions

e For all t > 0, N(t) ~ Pois(t). Why?
e Forany >0,

PIN(t) =] =P[Wi + -+ W, < t < Wy + -+ W+ W]

t
— [ s (B > £~ sl
0

' s" ! (t-s)
= -s. e t=s
*/o < (n—l)!) ¢
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Connection between exponential and Poisson distributions

e For all t > 0, N(t) ~ Pois(t). Why?
e Forany >0,

PIN(t) =] =P[Wi + -+ W, < t < Wy + -+ W+ W]

t
— [ s (B > £~ sl
0

' s" ! (t-s)
= -s. e t=s
*/o < (n—l)!) ¢

eit ! n—1
= (n—l)!/o s""*ds
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Connection between exponential and Poisson distributions

e For all t > 0, N(t) ~ Pois(t). Why?
e Forany >0,

PIN(t) =] =P[Wi + -+ W, < t < Wy + -+ W+ W]

t
— [ s (B > £~ sl
0

' s" ! (t-s)
= -s. e t=s
*/o < (n—l)!) ¢

eit ! n—1
_(n—l)!/o s""*ds

Lt

n!
= P[Pois(t) = Jj].

SIS 27 51
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Connection between exponential and Poisson distributions

For t >0, let N(t) = max{i: Wi +---+ W; < t}.

o We saw that N(t) ~ Pois(t).
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Connection between exponential and Poisson distributions

For t >0, let N(t) = max{i: Wi +---+ W; < t}.
o We saw that N(t) ~ Pois(t).
@ We also have for any 0 < s < t that
N(t) — N(s) and {N(u)}o<u<s are independent.

o Why?
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Connection between exponential and Poisson distributions

For t >0, let N(t) = max{i: Wi +---+ W; < t}.
o We saw that N(t) ~ Pois(t).
@ We also have for any 0 < s < t that
N(t) — N(s) and {N(u)}o<u<s are independent.

@ Why? This follows from the memorylessness property of the exponential
distribution.

SIS 27 T
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Connection between exponential and Poisson distributions

For any 0 < s < t that

N(t) — N(s) and {N(u)}o<u<s are independent.

@ Suppose N(s) = k and the arrival times before s are 0 < t; <--- < t; <s.
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Connection between exponential and Poisson distributions

For any 0 < s < t that

N(t) — N(s) and {N(u)}o<u<s are independent.

@ Suppose N(s) = k and the arrival times before s are 0 < t; <--- < t; <s.
@ This just means that Wy = t;, Wi + Wh =t ... , Wi + - - - + W) = t.
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Connection between exponential and Poisson distributions

For any 0 < s < t that

N(t) — N(s) and {N(u)}o<u<s are independent.

@ Suppose N(s) = k and the arrival times before s are 0 < t; <--- < t; <s.
@ This just means that Wy = t;, Wi + Wh =t ... , Wi + - - - + W) = t.
@ Since N(s) = k, we must have W1 > s — t.

@ But by the memorylessness property of the exponential distribution

P[Wk+1 >Ss—t+t | Wiy > s — tk] = P[Wk+1 > t] =e

@ So, the waiting times for arrivals after s are iid Exp(1) random variables
which are independent of {N(u)}o<u<s.
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