STATS 217: Introduction to Stochastic Processes I

Lecture 6

- Let W_1, W_2, \ldots be independent Exp(1) random variables. Let $W_0 = 0$.
- You should think of W_i as **waiting times** i.e. W_1 is the time you wait before the first event happens, W_2 is the time you wait between the first and second event, and so on.
- For $t \ge 0$, let

$$N(t) = \max\{i : W_1 + \cdots + W_i \leq t\}.$$

- So, N(t) denotes the number of events that happen by time t.
- In particular, N(0) = 0.
- It turns out that for all $t \ge 0$,

$$N(t) \sim \text{Pois}(t)$$
.

• For all
$$t \ge 0$$
, $N(t) \sim \text{Pois}(t)$. Why?

• For any $j \ge 0$,

$$\begin{split} \mathbb{P}[N(t) = j] &= \mathbb{P}[W_1 + \dots + W_j \le t < W_1 + \dots + W_j + W_{j+1}] \\ &= \int_0^t f_{W_1 + \dots + W_j}(s) \mathbb{P}[W_{j+1} > t - s] ds \\ &= \int_0^t \left(e^{-s} \cdot \frac{s^{n-1}}{(n-1)!} \right) \cdot e^{-(t-s)} ds \\ &= \frac{e^{-t}}{(n-1)!} \int_0^t s^{n-1} ds \\ &= e^{-t} \cdot \frac{t^n}{n!} \\ &= \mathbb{P}[\operatorname{Pois}(t) = j]. \end{split}$$

For $t \geq 0$, let $N(t) = \max\{i : W_1 + \cdots + W_i \leq t\}$.

- We saw that $N(t) \sim \text{Pois}(t)$.
- We also have for any $0 \le s < t$ that

N(t) - N(s) and $\{N(u)\}_{0 \le u \le s}$ are independent.

• Why? This follows from the memorylessness property of the exponential distribution.

For any $0 \le s < t$ that

N(t) - N(s) and $\{N(u)\}_{0 \le u \le s}$ are independent.

- Suppose N(s) = k and the arrival times before s are $0 \le \alpha_1 \le \cdots \le \alpha_k \le s$.
- This just means that $W_1 = \alpha_1, W_1 + W_2 = \alpha_2, \dots, W_1 + \dots + W_k = \alpha_k$.
- Since N(s) = k, we must have W_{k+1} ≥ s − α_k.
- But by the memorylessness property of the exponential distribution

$$\mathbb{P}[W_{k+1} > \mathbf{s} - \alpha_k + t \mid W_{k+1} > \mathbf{s} - \alpha_k] = \mathbb{P}[W_{k+1} > t] = \mathbf{e}^{-t}.$$

 So, the waiting times for arrivals after s are iid Exp(1) random variables which are independent of {N(u)}_{0<u<s}. Let $\lambda > 0$. A collection of random variables $\{N(s), s \ge 0\}$ is said to be a **Poisson** point process with rate λ if

- \bigcirc $N(t+s) N(s) \sim \text{Pois}(\lambda t)$,
- ${igsident} N(t)$ has independent increments, i.e., for any $t_0 < t_1 < \cdots < t_n$,

 $N(t_1) - N(t_0), N(t_2) - N(t_1), \dots, N(t_n) - N(t_{n-1})$ are independent.

We already saw above that taking $W_0 = 0$, W_1, W_2, \ldots to be iid $Exp(\lambda)$ and

$$N(s) := \max\{i : W_1 + \cdots + W_i \leq s\}$$

gives a Poisson process with rate λ .

In fact, our construction of the PPP is unique.

- Let $\{N(s)\}_{s\geq 0}$ be a Poisson point process with rate λ .
- Let $\alpha_0 = 0$.
- For $i \ge 1$, let $\alpha_i := \inf\{t : N(t) = i\}$.
- So, α_i is the (random) i^{th} arrival time i.e. the time that the i^{th} event happens.
- Let $W_i = \alpha_i \alpha_{i-1}$ denote the (random) waiting time for the *i*th event.
- Then, W_1, W_2, \ldots , are iid $Exp(\lambda)$.

Uniqueness of the construction

Here's the idea.

- Let's look at $W_{i+1} = \alpha_{i+1} \alpha_i$.
- By conditioning on α_i , we have

$$\mathbb{P}[W_{i+1} > t] = \int_0^\infty \mathbb{P}[\alpha_{i+1} - s > t \mid \alpha_i = s] f_{\alpha_i}(s) ds.$$

Note that

$$\alpha_{i+1} - s > t \mid \alpha_i = s \iff N(s+t) - N(s) = 0 \mid N(s) = i$$

• But by the independent increment property,

$$\mathbb{P}[N(s+t) - N(s) = 0 \mid N(s) = i] = \mathbb{P}[N(s+t) - N(s) = 0]$$

 $= \mathbb{P}[\mathsf{Pois}(\lambda t) = 0]$
 $= e^{-\lambda t}$

Uniqueness of the construction

- This shows that the waiting times W_1, W_2, \ldots have $E_{xp}(\lambda)$ distribution,
- As for independence, note that we actually showed that for all s,

$$\mathbb{P}[W_{i+1} > t \mid \alpha_i = s] = e^{-\lambda t}.$$

• Since by the independent increments property,

$$\mathbb{P}[W_{i+1} > t \mid \alpha_i = s] = \mathbb{P}[W_{i+1} > t \mid \alpha_i = s, \alpha_{i-1} = *, \dots, \alpha_1 = *]$$

this shows that $W_{i+1} = \alpha_{i+1} - \alpha_i$ is independent of $\alpha_1, \ldots, \alpha_i$, and hence of W_1, \ldots, W_i .

Infinitesimal description of the PPP

Here is another equivalent (although a bit informal) "infinitesimal" description of the Poisson point process with rate λ .

- N(t) is the number of points in [0, t].
- $\mathbb{P}[\text{there is a point in } [t, t + dt]] = \lambda \cdot dt.$
- The number of points in disjoint intervals are independent.

Idea: the second and third conditions, together with the Poisson approximation of the Binomial distribution show that indeed, for any $0 \le s \le t$,

$$N(t) - N(s) \sim \mathsf{Pois}(\lambda(t-s)),$$

and the third condition guarantees independence of increments.

• In many situations, the condition

```
\mathbb{P}[\text{there is a point in } [t, t + dt]] = \lambda \cdot dt
```

is unrealistic.

- For instance, more phone calls start during the day than in the middle of the night.
- In such cases, one can consider the more general condition

 $\mathbb{P}[\text{there is a point in } [t, t + dt]] = \lambda(t) \cdot dt.$

The Inhomogeneous PPP

The inhomogeneous PPP may be described infinitesimally by

- N(t) is the number of points in [0, t].
- $\mathbb{P}[\text{there is a point in } [t, t + dt]] = \lambda(t)dt.$
- The number of points in disjoint intervals are independent.

By the Poisson approximation of the Binomial distribution, for any $0 \le s \le t$,

$$N(t) - N(s) \sim \mathsf{Pois}\left(\int_{s}^{t} \lambda(u) du\right).$$

Why?

$$\mathbb{P}[N(t) - N(s) = k] \approx \mathbb{P}\left[\operatorname{Ber} \frac{\lambda(s)}{n} + \operatorname{Ber} \frac{\lambda(s+n^{-1})}{n} + \dots + \operatorname{Ber} \frac{\lambda(t-n^{-1})}{n} = k\right]$$
$$\approx \mathbb{P}\left[\operatorname{Pois}\left(\frac{\lambda(s)}{n} + \frac{\lambda(s+n^{-1})}{n} + \frac{\lambda(t-n^{-1})}{n}\right) = k\right]$$
$$\approx \mathbb{P}\left[\operatorname{Pois}\left(\int_{s}^{t} \lambda(u)du\right) = k\right].$$

Construction of inhomogeneous PPP

Let

$$\Lambda(s,t) := \int_s^t \lambda(u) du.$$

N(t) = N^{hom}(Λ(0, t)) is an inhomogeneous PPP, where N^{hom}(·) is a (homogeneous) PPP with rate 1. Why?

Clearly N(0) = 0 and N(t) has independent increments. As for the distribution, note that

$$egin{aligned} &\mathcal{N}(t+dt)-\mathcal{N}(t)=\mathcal{N}^{\mathsf{hom}}(\Lambda(0,t+dt))-\mathcal{N}^{\mathsf{hom}}(\Lambda(0,t))\ &pprox\mathcal{N}^{\mathsf{hom}}(\Lambda(0,t)+\lambda(t)dt)-\mathcal{N}^{\mathsf{hom}}(\Lambda(0,t))\ &pprox\lambda(t)dt. \end{aligned}$$