
STATS 217: Introduction to Stochastic Processes I
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Recap

The inhomogeneous PPP may be described infinitesimally by

N(t) is the number of points in [0, t].

P[there is a point in [t, t + dt]] = λ(t)dt i.e.,

P[N(t + ε)− N(t) = 0] = 1− λε+ o(ε).
P[N(t + ε)− N(t) = 1] = λε+ o(ε).
P[N(t + ε)− N(t) > 1] = o(ε),

where o(ε)/ε→ 0 as ε→ 0.

The number of points in disjoint intervals are independent.

We saw that for any 0 ≤ s ≤ t, N(t)− N(s) ∼ Pois
(∫ t

s
λ(u)du

)
.

Construction: N(t) = Nhom(Λ(0, t)) is an inhomogeneous PPP, where Nhom(·) is
a (homogeneous) PPP with rate 1.

Homogeneous case: Taking λ(t) ≡ λ gives a (homogeneous) PPP of rate λ, in
which case the waiting (interarrival) times are i.i.d. Exp(λ) (not true in the
general inhomogeneous case).
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Superposition of Poisson processes

Let N1(t), . . . ,Nk(t) be independent Poisson processes with rates λ1, . . . , λk .

Then, N1(t) + · · ·+ Nk(t) is a Poisson process with rate λ1 + · · ·+ λk .

Why?

Recall properties (P1), (P2), (P3) from last lecture.

(P1) and (P3) are immediate.

As for (P2), for any s ≤ t

N1(t) + · · ·+ Nk(t)− (N1(s) + · · ·+ Nk(s))

= (N1(t)− N1(s)) + · · ·+ (Nk(t)− Nk(s))

∼ Pois(λ1(t − s)) + · · ·+ Pois(λk(t − s))

∼ Pois((λ1 + · · ·+ λk)(t − s)).
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Poisson thinning

Let {N(s)}s≥0 denote a Poisson process with rate λ.

Let α1, α2, . . . denote the (random) “arrival times”.

Let Y1,Y2, . . . denote a sequence of iid random variables.

For each j ∈ supp(Y1), let pj = P[Y1 = j ]

For each j ∈ supp(Y1), define

Nj(s) := |{i ∈ {1, 2, . . . , bN(s)c} : Yi = j}|.

Then,

{Nj(s)}s≥0 is a Poisson process with rate pjλ and
{N1(s)}s≥0, {N2(s)}s≥0, . . . are independent.
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Poisson thinning

Why? Can check by direct calculation, but for intuition, consider the case
when Y ∼ Ber(p).

From the infinitesimal description, it is clear that N0(t) is a PPP with rate
(1− p)λ and N1(t) is a PPP with rate pλ.

For independence, note that

P[N0 has a point in[t, t + dt] | N1 has a point in[t, t + dt]]

=
P[N0 and N1 have points in [t, t + dt]]

pλdt

≈ (pλdt)−1 ·
(
e−λdt · (λdt)2

2
· (p(1− p) + (1− p)p) + o((λdt)2)

)
≈ (1− p)λdt

= P[N0 has a point in [t, t + dt]].
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Poisson thinning

The analogous result also holds in the inhomogeneous case using the same
argument.

Let {N(s)}s≥0 denote an inhomogeneous PPP with rate λ(s).

Let {Y (s)}s≥0 denote a collection of independent random variables, each
with support {1, . . . , k}.
Let α1, α2, . . . denote the random arrival times.

For j = 1, . . . , k, define

Nj(s) := |{i ∈ {1, 2, . . . , bN(s)c} : Y (αi ) = j}|.

Then,

Nj(s) is an inhomogeneous PPP with rate λ(s)P[Y (s) = j ].
{N1(s)}s≥0, . . . , {Nk(s)}s≥0 are independent processes
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Example

Example 2.5 from Durrett. Given a Poisson process of red arrivals with rate λ
and an independent Poisson process of green arrivals with rate µ, what is the
probability that we will get 6 red arrivals before a total of 4 green ones?

Equivalently, at least 6 red arrivals in the first 9.

By thinning,
9∑

k=6

(
λ

λ+ µ

)k (
µ

λ+ µ

)9−k

.
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Example

Example 2.4 from Durrett. Consider a model of telephone traffic in which the
system starts empty at time 0. Suppose that the starting times of the calls is a
Poisson process with rate λ and that the probability a call started at time s has
ended by time t is G (t − s), where G is some CDF with G (0) = 0 and mean µ.
What is the distribution of the number of calls still in progress at time t?

Call starting at time α ∈ [0, t] is kept with probability (1− G (t − α)).

Therefore, by thinning, number of calls in progress at time t is Poisson with
mean ∫ t

s=0

λ(1− G (t − s))ds = λ

∫ t

r=0

(1− G (r))dr .

Let t →∞ to see that in the long run, the number of calls in the system is
Poisson with mean

λ

∫ ∞
r=0

P(G ≥ r)dr = λµ.
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Compound Poisson processes

Each of the ‘thinned’ Poisson processes is a special case of a compound Poisson
process.

Let {N(s)}s≥0 denote a Poisson process with rate λ.

Let α1, α2, . . . denote the (random) “arrival times”.

Let Y1,Y2, . . . denote a sequence of iid random variables. Let Y0 = 0.

Let
S(t) = Y0 + Y1 + · · ·+ YN(t).

Then, E[S(t)] = E[Y1] · E[N(t)] by the same argument as for branching
processes.

Also, by the same argument as on this week’s homework,

Var[S(t)] = E[N(t)] · Var(Y1) + Var[N(t)] · E[Y1]2.
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Poisson conditioning

Let {N(s)}s≥0 be a Poisson process with rate λ.

Let α1, α2, . . . , denote the (random) “arrival times”.

Conditioned on N(t) = n, what is the distribution of α1, . . . , αn?

It turns out that
{α1, . . . , αn} ∼ {u1, . . . , un},

where u1, . . . , un are iid uniformly distributed in [0, t].

Why? Again, this is intuitive from the infinitesimal description of the process.
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Poisson conditioning

Formally,

P[arrival times α1, . . . , αn | N(t) = n]

= P[N(t) = n]−1P[W1 = α1, . . . ,Wn = αn − αn−1,Wn+1 > t − αn]

= P[N(t) = n]−1λe−λα1 · . . . λe−λ(αn−αn−1) · e−λ(t−αn)

= P[N(t) = n]−1 · λne−λt ,

which does not depend on α1, . . . , αn.
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Example: simulating a PPP

Here is a practical application of Poisson conditioning.

How might one generate (on a computer) a PPP with rate λ in the time
interval [0, t]?

Poisson conditioning shows that we can do this in two easy steps.

First, generate N(t) ∼ Pois(λt).

Next, generate α1, . . . , αN(t) iid uniformly in [0, t].
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