STATS 217: Introduction to Stochastic Processes I

Lecture 7

Recap

The inhomogeneous PPP may be described infinitesimally by

- $N(t)$ is the number of points in $[0, t]$.
- $\mathbb{P}[$ there is a point in $[t, t+d t]]=\lambda(t) d t$ i.e.,
- $\mathbb{P}[N(t+\epsilon)-N(t)=0]=1-\lambda \epsilon+o(\epsilon)$. complementary case: no point
- $\mathbb{P}[N(t+\epsilon)-N(t)=1]=\lambda \epsilon+o(\epsilon)$. exactly one point
- $\mathbb{P}[N(t+\epsilon)-N(t)>1]=o(\epsilon)$, more than one point where $o(\epsilon) / \epsilon \rightarrow 0$ as $\epsilon \rightarrow 0$.
- The number of points in disjoint intervals are independent., mean of. We saw that for any $0 \leq s \leq t, N(t)-N(s) \sim \operatorname{Pois}\left(\int_{\int_{s}^{t} \lambda(u) d u}\right)$. poisson
Construction: $N(t)=N^{\text {hom }}(\Lambda(0, t))$ is an inhomogeneous PPP, where $N^{\text {hom }}(\cdot)$ is a (homogeneous) PPP with rate 1. $\quad \lambda(0, t)=t \int_{0} \lambda(u) d u$
Homogeneous case: Taking $\lambda(t) \equiv \lambda$ gives a (homogeneous) PPP of rate λ, in which case the waiting (interarrival) times are i.i.d. $\operatorname{Exp}(\lambda)$ (not true in the general inhomogeneous case).

Superposition of Poisson processes

Let $N_{1}(t), \ldots, N_{k}(t)$ be independent Poisson processes with rates $\lambda_{1}, \ldots, \lambda_{k}$.

- Then, $N_{1}(t)+\cdots+N_{k}(t)$ is a Poisson process with rate $\lambda_{1}+\cdots+\lambda_{k}$.
- Why?

Superposition of Poisson processes

$$
\begin{array}{ll}
(P 1): N(0)=0 & P 2): \\
(P 3): \text { ind of incRements } & N(t)-N(s) \sim \operatorname{Poi}(\lambda(t-s))
\end{array}
$$

Let $N_{1}(t), \ldots, N_{k}(t)$ be independent Poisson processes with rates $\lambda_{1}, \ldots, \lambda_{k}$.

- Then, $N_{1}(t)+\cdots+N_{k}(t)$ is a Poisson process with rate $\lambda_{1}+\cdots+\lambda_{k}$.
- Why? Recall properties (P1), (P2), (P3) from last lecture.
- (P1) and (P3) are immediate.

Superposition of Poisson processes

Let $N_{1}(t), \ldots, N_{k}(t)$ be independent Poisson processes with rates $\lambda_{1}, \ldots, \lambda_{k}$.

- Then, $N_{1}(t)+\cdots+N_{k}(t)$ is a Poisson process with rate $\lambda_{1}+\cdots+\lambda_{k}$.
- Why? Recall properties (P1), (P2), (P3) from last lecture.
- (P1) and (P3) are immediate.
- As for (P2), for any $s \leq t$

$$
\begin{aligned}
& N_{1}(t)+\cdots+N_{k}(t)-\left(N_{1}(s)+\cdots+N_{k}(s)\right) \\
& =\left(N_{1}(t)-N_{1}(s)\right)+\cdots+\left(N_{k}(t)-N_{k}(s)\right) \\
& \sim \operatorname{Pois}\left(\lambda_{1}(t-s)\right)+\cdots+\operatorname{Pois}\left(\lambda_{k}(t-s)\right)
\end{aligned}
$$

Superposition of Poisson processes

Let $N_{1}(t), \ldots, N_{k}(t)$ be independent Poisson processes with rates $\lambda_{1}, \ldots, \lambda_{k}$.

- Then, $N_{1}(t)+\cdots+N_{k}(t)$ is a Poisson process with rate $\lambda_{1}+\cdots+\lambda_{k}$.
- Why? Recall properties (P1), (P2), (P3) from last lecture.
- (P1) and (P3) are immediate.
- As for (P2), for any $s \leq t$

$$
\begin{aligned}
& N_{1}(t)+\cdots+N_{k}(t)-\left(N_{1}(s)+\cdots+N_{k}(s)\right) \\
& =\left(N_{1}(t)-N_{1}(s)\right)+\cdots+\left(N_{k}(t)-N_{k}(s)\right) \\
& \sim \operatorname{Pois}\left(\lambda_{1}(t-s)\right)+\cdots+\operatorname{Pois}\left(\lambda_{k}(t-s)\right) \\
& \sim \operatorname{Pois}\left(\left(\lambda_{1}+\cdots+\lambda_{k}\right)(t-s)\right)
\end{aligned}
$$

Poisson thinning

- Let $\{N(s)\}_{s \geq 0}$ denote a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$ denote the (random) "arrival times".
- Let Y_{1}, Y_{2}, \ldots denote a sequence of fid random variables.
- For each $j \in \operatorname{supp}\left(Y_{1}\right)$, let $p_{j}=\mathbb{P}\left[Y_{1}=j\right]$
- For each $j \in \operatorname{supp}\left(Y_{1}\right)$, define

$$
N_{j}(s):=\left|\left\{i \in\{1,2, \ldots,\lfloor N(s)\rfloor\}: Y_{i}=j\right\}\right| .
$$

Poisson thinning

- Let $\{N(s)\}_{s \geq 0}$ denote a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$ denote the (random) "arrival times".
- Let Y_{1}, Y_{2}, \ldots denote a sequence of fid random variables.
- For each $j \in \operatorname{supp}\left(Y_{1}\right)$, let $p_{j}=\mathbb{P}\left[Y_{1}=j\right]$
- For each $j \in \operatorname{supp}\left(Y_{1}\right)$, define

$$
N_{j}(s):=\left|\left\{i \in\{1,2, \ldots,\lfloor N(s)\rfloor\}: Y_{i}=j\right\}\right|
$$

- Then,
clear from infinitesimal description.
- $\left\{N_{j}(s)\right\}_{s \geq 0}$ is a Poisson process with rate $p_{j} \lambda$ and
- $\left\{N_{1}(s)\right\}_{s \geq 0},\left\{N_{2}(s)\right\}_{s \geq 0}, \ldots$ are independent.

$$
\begin{gathered}
\underline{I}\left(N_{1}\left(t_{1}\right)=*, N_{1}\left(t_{2}\right)=* \ldots N_{2}\left(t_{k}\right)=*\right. \\
\left.\mid \underline{N}_{2}^{-}\left(s_{1}\right)=*, \ldots, N_{2}\left(s_{l}\right)=*\right)
\end{gathered}
$$

Poisson thinning

- Why? Can check by direct calculation, but for intuition, consider the case when $Y \sim \operatorname{Ber}(p)$.

Poisson thinning

- Why? Can check by direct calculation, but for intuition, consider the case when $Y \sim \operatorname{Ber}(p)$.
- From the infinitesimal description, it is clear that $N_{0}(t)$ is a PPP with rate $(1-p) \lambda$ and $N_{1}(t)$ is a PPP with rate $p \lambda$.

Poisson thinning

- Why? Can check by direct calculation, but for intuition, consider the case when $Y \sim \operatorname{Ber}(p)$.
- From the infinitesimal description, it is clear that $N_{0}(t)$ is a PPP with rate $(1-p) \lambda$ and $N_{1}(t)$ is a PPP with rate $p \lambda$.
- For independence, note that wis that this is $(1-p) \lambda d t$
$\mathbb{P}\left[N_{0}\right.$ has a point in $[t, t+d t] \mid N_{1}$ has a point in $\left.[t, t+d t]\right]$

Poisson thinning

- Why? Can check by direct calculation, but for intuition, consider the case when $Y \sim \operatorname{Ber}(p)$.
- From the infinitesimal description, it is clear that $N_{0}(t)$ is a PPP with rate $(1-p) \lambda$ and $N_{1}(t)$ is a PPP with rate $p \lambda$.
- For independence, note that

$$
\begin{aligned}
& \mathbb{P}\left[N_{0} \text { has a point in }[t, t+d t] \mid N_{1} \text { has a point in }[t, t+d t]\right] \\
& =\frac{\mathbb{P}\left[N_{0} \text { and } N_{1} \text { have points in }[t, t+d t]\right]}{p \lambda d t \rightarrow \mathbb{N}\left[N_{1} \text { has o point in }[t, t+d t]\right] .}
\end{aligned}
$$

in order to compute this
to first order in $d t$, want numerator up to $(d t)^{2}+\cdots$

Poisson thinning

- Why? Can check by direct calculation, but for intuition, consider the case when $Y \sim \operatorname{Ber}(p)$.
- From the infinitesimal description, it is clear that $N_{0}(t)$ is a PPP with rate $(1-p) \lambda$ and $N_{1}(t)$ is a PPP with rate $p \lambda$.
- For independence, note that
$\mathbb{P}\left[N_{0}\right.$ has a point in $[t, t+d t] \mid N_{1}$ has a point in $\left.[t, t+d t]\right]$
$=\frac{\mathbb{P}\left[N_{0} \text { and } N_{1} \text { have points in }[t, t+d t]\right]}{p \lambda d t}$
$\mathbb{P}\left[N(t)\right.$ has 2 points in $\left.\left[t_{1} t+d t\right]\right]$
$=\mathbb{I}[\operatorname{Poi}(\lambda d t)=2]=e^{-\lambda d t} \frac{(\lambda d t)^{2}}{2!}$

Poisson thinning

- Why? Can check by direct calculation, but for intuition, consider the case when $Y \sim \operatorname{Ber}(p)$.
- From the infinitesimal description, it is clear that $N_{0}(t)$ is a PPP with rate $(1-p) \lambda$ and $N_{1}(t)$ is a PPP with rate $p \lambda$.
- For independence, note that

$$
\begin{aligned}
& \mathbb{P}\left[N_{0} \text { has a point in }[t, t+d t] \mid N_{1} \text { has a point in }[t, t+d t]\right] \\
& =\frac{\mathbb{P}\left[N_{0} \text { and } N_{1} \text { have points in }[t, t+d t]\right]}{p \lambda d t}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{P}\left[N_{0} \text { has a point in }[t, t+d t]\right] . \\
& \text { PI [one Red one green } \\
& \text { in }[t, t+d t]]
\end{aligned}
$$

Poisson thinning

The analogous result also holds in the inhomogeneous case using the same argument.

Poisson thinning

The analogous result also holds in the inhomogeneous case using the same argument.

- Let $\{N(s)\}_{s \geq 0}$ denote an inhomogeneous PPP with rate $\lambda(s)$.
- Let $\{Y(s)\}_{s \geq 0}$ denote a collection of independent random variables, each with support $\{1, \ldots, k\}$.
- Let $\alpha_{1}, \alpha_{2}, \ldots$ denote the random arrival times.
- For $\overline{j=1}, \ldots, k$, define

$$
N_{j}(s):=\left|\left\{i \in\{1,2, \ldots,\lfloor N(s)\rfloor\}: Y\left(\alpha_{i}\right)=j\right\}\right| .
$$

Poisson thinning

The analogous result also holds in the inhomogeneous case using the same argument.

- Let $\{N(s)\}_{s \geq 0}$ denote an inhomogeneous PPP with rate $\lambda(s)$.
- Let $\{Y(s)\}_{s \geq 0}$ denote a collection of independent random variables, each with support $\{1, \ldots, k\}$.
- Let $\alpha_{1}, \alpha_{2}, \ldots$ denote the random arrival times.
- For $j=1, \ldots, k$, define

$$
N_{j}(s):=\left|\left\{i \in\{1,2, \ldots,\lfloor N(s)\rfloor\}: Y\left(\alpha_{i}\right)=j\right\}\right| .
$$

${ }^{s} s+d s \quad \lambda(s) d s$

- Then,
- $N_{j}(s)$ is an inhomogeneous PPP with rate $\widetilde{\lambda(s) \mathbb{P}[Y(s)=j]}$.
- $\left\{N_{1}(s)\right\}_{s \geq 0}, \ldots,\left\{N_{k}(s)\right\}_{s \geq 0}$ are independent processes

Example

Example 2.5 from Durrett. Given a Poisson process of red arrivals with rate λ and an independent Poisson process of green arrivals with rate μ, what is the probability that we will get 6 red arrivals before a total of 4 green ones?
idea: view Red a green PPP
as thinned versions of a common PD P.
detail: $N^{-}(t)$ has Rate $(\lambda+\mu)$

$$
\mathbb{P}[\text { Red }]=\frac{\lambda}{\lambda+\mu} \mathbb{P}[\text { green }]=\frac{\mu}{\lambda+\mu}
$$

Example

Example 2.5 from Durrett. Given a Poisson process of red arrivals with rate λ and an independent Poisson process of green arrivals with rate μ, what is the probability that we will get 6 red arrivals before a total of 4 green ones?
step 1: "merge" via thinning.

- Equivalently, at least 6 red arrivals in the first 9.

$$
\begin{aligned}
& \text { in } q \text { coin tosses } \\
& \text { Peak }=\frac{\lambda}{\lambda+\mu} \\
& \mathbb{P}[\geqslant 6 \text { heads }]=\text { ? }
\end{aligned}
$$

Example

Example 2.5 from Durrett. Given a Poisson process of red arrivals with rate λ and an independent Poisson process of green arrivals with rate μ, what is the probability that we will get 6 red arrivals before a total of 4 green ones?

- Equivalently, at least 6 red arrivals in the first 9.
- By thinning,

$$
\operatorname{Pred} \propto \lambda \quad \sum_{k=6}^{9}\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{9-k}\binom{a}{k} .
$$

Preen $\alpha<\mu$
$p_{\text {red }}+$ P greer $=1$

Example

\rightarrow CDF of

IP [call lasts for time $\leq a]=G(a)$ dis. of call lengths.
Example 2.4 from Durrett. Consider a model of telephone traffic in which the system starts empty at time 0 . Suppose that the starting times of the calls is a Poisson process with rate λ and that the probability a call started at time s has ended by time t is $G(t-s)$, where G is some CDF with $G(0)=0$ and mean μ. What is the distribution of the number of calls still in progress at time t ? calls

- Call starting at time $\alpha \in[0, t]$ is kept with probability $(1-G(t-\alpha))$. are ind.
- Therefore, by thinning, number of calls in progress at time t is Poisson with mean
- Let $t \rightarrow \infty$ to see that in the long run, the number of calls in the system is Poisson with mean

$$
\lambda \int_{r=0}^{\infty} \mathbb{P}(G \geq r) d r=\lambda \mu
$$

\rightarrow how can II have a call in my sys of time?

- it must start at $a \in[0, t]$ $(1-G(t-\alpha)) \longrightarrow$ - must last for $\geqslant(t-\alpha)$

Compound Poisson processes

Each of the 'thinned' Poisson processes is a special case of a compound Poisson process.

- Let $\{N(s)\}_{s \geq 0}$ denote a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$ denote the (random) "arrival times".
- Let Y_{1}, Y_{2}, \ldots denote a sequence of iid random variables. Let $Y_{0}=0$.
- Let

$$
S(t)=Y_{0}+Y_{1}+\cdots+Y_{N(t)} .
$$

Compound Poisson processes

Each of the 'thinned' Poisson processes is a special case of a compound Poisson process.

- Let $\{N(s)\}_{s \geq 0}$ denote a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$ denote the (random) "arrival times".
- Let Y_{1}, Y_{2}, \ldots denote a sequence of iid random variables. Let $Y_{0}=0$.
- Let

$$
\int(t)=Y_{0}+Y_{1}+\cdots+Y_{N(t)} .
$$

randon sum $w /$ Rardom $\#$ of summands.

- Then, $\mathbb{E}[S(t)]=\mathbb{E}\left[Y_{1}\right] \cdot \mathbb{E}[N(t)]$ by the same argument as for branching processes.

Compound Poisson processes

Each of the 'thinned' Poisson processes is a special case of a compound Poisson process.

- Let $\{N(s)\}_{s \geq 0}$ denote a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$ denote the (random) "arrival times".
- Let Y_{1}, Y_{2}, \ldots denote a sequence of iid random variables. Let $Y_{0}=0$.
- Let

$$
S(t)=Y_{0}+Y_{1}+\cdots+Y_{N(t)} .
$$

- Then, $\mathbb{E}[S(t)]=\mathbb{E}\left[Y_{1}\right] \cdot \mathbb{E}[N(t)]$ by the same argument as for branching processes.
- Also, by the same argument as on this week's homework,

$$
\begin{aligned}
\operatorname{Var}[S(t)] & =\mathbb{E}[N(t)] \cdot \operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}[N(t)] \cdot \mathbb{E}\left[Y_{1}\right]^{2} \\
S(t) & =Z_{n} \quad N(t)-Z_{n-1} \quad Y_{1}
\end{aligned}=\xi,
$$

Poisson conditioning
homogeneous case

- Let $\{N(s)\}_{s \geq 0}$ be a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$, denote the (random) "arrival times".
- Conditioned on $N(t)=n$, what is the distribution of $\alpha_{1}, \ldots, \alpha_{n}$?

there are 100 points but what's the dishibution?

Poisson conditioning

- Let $\{N(s)\}_{s \geq 0}$ be a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$, denote the (random) "arrival times".
- Conditioned on $N(t)=n$, what is the distribution of $\alpha_{1}, \ldots, \alpha_{n}$?
- It turns out that

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \sim\left\{u_{1}, \ldots, u_{n}\right\}
$$

where u_{1}, \ldots, u_{n} are iid uniformly distributed in $[0, t]$.

Poisson conditioning

- Let $\{N(s)\}_{s \geq 0}$ be a Poisson process with rate λ.
- Let $\alpha_{1}, \alpha_{2}, \ldots$, denote the (random) "arrival times".
- Conditioned on $N(t)=n$, what is the distribution of $\alpha_{1}, \ldots, \alpha_{n}$?
- It turns out that

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \sim\left\{u_{1}, \ldots, u_{n}\right\}
$$

where u_{1}, \ldots, u_{n} are iid uniformly distributed in $[0, t]$.

- Why? Again, this is intuitive from the infinitesimal description of the process.

Poisson conditioning

Formally,

\mathbb{P} [arrival times $\left.\alpha_{1}, \ldots, \alpha_{n} \mid N(t)=n\right]$
$=\mathbb{P}[N(t)=n]^{-1} \mathbb{P}\left[W_{1}=\alpha_{1}, \ldots, W_{n}=\alpha_{n}-\alpha_{n-1}, W_{n+1}>t-\alpha_{n}\right]$

Poisson conditioning

Formally,

$$
\begin{aligned}
& \mathbb{P}\left[\text { arrival times } \alpha_{1}, \ldots, \alpha_{n} \mid N(t)=n\right] \\
& =\mathbb{P}[N(t)=n]^{-1} \mathbb{P}\left[W_{1}=\alpha_{1}, \ldots, W_{n}=\alpha_{n}-\alpha_{n-1}, W_{n+1}>t-\alpha_{n}\right] \\
& =\mathbb{P}[N(t)=n]^{-1} \lambda e^{-\lambda \alpha_{1}} \cdot \ldots \lambda e^{-\lambda\left(\alpha_{n}-\alpha_{n-1}\right)} \cdot e^{-\lambda\left(t-\alpha_{n}\right)} \\
& \quad \lambda e^{-\lambda \not \alpha_{1}} e^{-\lambda\left(\alpha<\alpha_{1}\right)},
\end{aligned}
$$

Poisson conditioning

Formally,

$$
\mathbb{P}(N(t)=n)=\mathbb{P}\left[P_{o i}(\lambda t)=n\right]
$$

$$
\begin{aligned}
& \quad=\bar{e}^{-\lambda(-} \frac{(\underline{\lambda} t)^{n}}{n!} \\
& =\mathbb{P}\left[\text { arrival times } \alpha_{1}, \ldots, \alpha_{n} \mid N(t)=n\right] \\
& =\mathbb{P}[N(t)=n]^{-1} \mathbb{P}\left[W_{1}=\alpha_{1}, \ldots, W_{n}=\alpha_{n}-\alpha_{n-1}, W_{n+1}>t-\alpha_{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{P}[N(t)=n]^{-1} \lambda e^{-\lambda \alpha_{1}} \cdot \ldots \lambda e^{-\lambda\left(\alpha_{n}-\alpha_{n-1}\right)} \cdot e^{-\lambda\left(t-\alpha_{n}\right)} \\
& =\mathbb{P}[N(t)=n]^{-1} \cdot \lambda^{n} e^{-\lambda t} .
\end{aligned}
$$

which does not depend on $\alpha_{1}, \ldots, \alpha_{n}$.

$$
\left(\alpha_{1} \ldots \alpha_{n}\right) \in[0, t]^{n}
$$

unif $+i i d \Leftrightarrow$ densing is $\left(\frac{1}{t}\right)^{n}$. n ! factor from permutations
dishibution of n lid uniform points

$$
\text { in }[0, t]
$$

Example: simulating a PPP

Here is a practical application of Poisson conditioning.

- How might one generate (on a computer) a PPP with rate λ in the time interval $[0, t]$?

$$
N^{-}(t)-N^{-}(0) \sim \operatorname{Poi}(\lambda t)
$$

Example: simulating a PPP

Here is a practical application of Poisson conditioning.

- How might one generate (on a computer) a PPP with rate λ in the time interval $[0, t]$?
- Poisson conditioning shows that we can do this in two easy steps.
- First, generate $N(t) \sim \operatorname{Pois}(\lambda t)$.
- Next, generate $\alpha_{1}, \ldots, \alpha_{N(t)}$ ii uniformly in $[0, t]$.
can also do this using
Gid exp. waiting times

