
STATS 217: Introduction to Stochastic Processes I

Lecture 8
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Random variables and stochastic processes

A random variable is a function

X : Ω→ R,

where Ω is a probability space (think of this as the space of outcomes of a
random experiment).

A stochastic process is a collection of random variables

(Xt)t∈T .

The most common choices for us will be

T = Z≥0 = {0, 1, 2, . . . , },
T = Z,
T = R.
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Markov chains

A discrete time Markov chain (DTMC) is a stochastic process (Xt)t∈Z≥0

satisfying the Markov property

P[Xn+1 = xn+1 | Xn = xn, . . . ,X0 = x0] = P[Xn+1 = xn+1 | Xn = xn]

for all n ≥ 1 and x0, . . . , xn+1.

In other words, conditioned on the present, the future is independent of the
past.

A DTMC is time homogeneous if

P[Xn+1 = j | Xn = i ] = P[Xm+1 = j | Xm = i ]

for all i , j and all times n,m.

From now on, unless specified otherwise, a DTMC is assumed to be time
homogeneous.
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Transition matrix

A DTMC is completely specified by the following pieces of information.

The state space S , which is the collection of all possible values that
X0,X1, . . . , could take.

The initial state X0.

The transition probabilities

pij := P[Xn+1 = j | Xn = i ] ∀i , j ∈ S .

By time homogeneity, the right hand side depends only on i , j and not on n.

It will be useful to combine all of the transition probabilities into an |S | × |S |
transition matrix P,

(P)ij := pij .

Note that P is row-stochastic i.e.∑
j∈S

pij = 1 ∀i ∈ S .
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Examples

Two state Markov chain.

State space: S = {0, 1}.
Transition matrix: (

1− p p
q 1− q,

)
for some p, q ∈ [0, 1].
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Examples

Symmetric simple random walk on the integers.

What is the state space?

What are the transition probabilities?
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Examples

Gambler’s ruin stopped at -$100 or $200.

What is the state space?

What are the transition probabilities?

A state i ∈ S is called absorbing if pii = 1.

What are the absorbing states, if any?
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Examples

Branching process with Z0 = 1 and offspring distribution ξ.

What is the state space?

What are the transition probabilities?

What are the absorbing states, if any?
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Examples

Coupon collector. There are n different types of coupons, say, {1, . . . , n}. Each
day you get a uniformly random coupon (repetitions allowed). You stop once
you’ve collected all n types of coupons.

Let Xi denote the number of different types of coupons you’ve collected by the
end of day i . You start with X0 = 0 coupons.

What is the state space?

What are the transition probabilities?

Are there any absorbing states?

On the problem set, you will study the time it takes to collect all n types of
coupons.
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Examples

Random walk on a graph. Let G = (V ,E ) be an undirected graph on vertices
V = {1, . . . , n} and edges E . We start at the vertex v0 and at every time, move
to a uniformly random neighbor of the current vertex.

Let Xi denote our position at time i .

What is the state space?

What are the transition probabilities?

Are there any absorbing states?
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Examples

Simple random walk on the n-dimensional hypercube. The n-dimensional
hypercube is the undirected graph on V = {0, 1}n where u, v ∈ V are connected
by an edge e ∈ E if and only if u and v differ in exactly one coordinate.

What is the state space?

What are the transition probabilities?

Starting from (0, 0, . . . , 0), can the random walk hit (1, 1, . . . , 1) in an even
number of steps?
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Examples

Lazy random walk on the n-dimensional hypercube. Transition matrix

Plazy =
1

2
I +

1

2
Psimple,

where I is the 2n × 2n identity matrix and Psimple is the transition matrix of the
simple random walk on the n-dimensional hypercube.

What is this Markov chain doing?

Starting at (0, 0, . . . , 0), can the random walk hit (1, 1, . . . , 1) in an even
number of steps?
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Examples

The Ehrenfest urn. n balls are distributed among two urns, urn A and urn B. At
each time, we select a ball uniformly at random and move it from its current urn
to the other urn.

How can we model this as a Markov chain?
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Examples

Polya’s urn. We start with a single urn containing a red ball and a white ball. At
each time, we select a ball uniformly at random and return it to the urn along
with a new ball of the same color.

How can we model this as a Markov chain?

Let Rk denote the number of red balls in the urn after k new balls have been
added. What are the possible values that Rk can take?

On the homework, you will find the distribution of Rk .
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Examples

Free throws. Consider a basketball player who makes free throws with the
following probabilities

1/2 if she missed the last two times

2/3 if she made one of the last two throws

3/4 if she made both of her last two throws.

Can this be modelled as a Markov chain?

What is the state space?

What are the transition probabilities?
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Multi-step transition probabilities

The transition probability pij tells us the probability of going from i to j in
one step, i.e.

pij = P[X1 = j | X0 = i ].

What about the probability of going from i to j in two steps i.e. what is

p2
ij := P[X2 = j | X0 = i ]?

Well, to go from i to j in two steps, we must go from i to some state k ∈ Ω
in one step and then from k to j in one step.
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Multi-step transition probabilities

Using the law of total probability, we have

P[X2 = j | X0 = i ] =
∑
k∈Ω

P[X1 = k ∧ X2 = j | X0 = i ]

=
∑
k∈Ω

P[X1 = k | X0 = i ]P[X2 = j | X0 = i ∧ X1 = k]

=
∑
k∈Ω

P[X1 = k | X0 = i ]P[X2 = j | X1 = k]

=
∑
k∈Ω

pikpkj

= (P2)ij .
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Multi-step transition probabilities

There is nothing special about two steps here and you should check that the
same argument gives

pnij := P[Xn = j | X0 = i ] = (Pn)ij ∀n ≥ 1.

Since for any non-negative integers `,m,

P`+m = P`Pm,

we obtain the Chapman-Kolmogorov equations

p`+m
ij =

∑
k∈Ω

p`ikp
m
kj .
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