STATS 217: Introduction to Stochastic Processes I

Lecture 8

Random variables and stochastic processes

- A random variable is a function

$$
X: \Omega \rightarrow \mathbb{R}
$$

where Ω is a probability space (think of this as the space of outcomes of a random experiment).

- A stochastic process is a collection of random variables

$$
\left(X_{t}\right)_{t \in \mathcal{T}} .
$$

- The most common choices for us will be

$$
\begin{aligned}
\mathcal{T} & =\mathbb{Z}^{\geq 0}=\{0,1,2, \ldots,\} \\
\mathcal{T} & =\mathbb{Z} \\
\mathcal{T} & =\mathbb{R}
\end{aligned}
$$

Markov chains

- A discrete time Markov chain (DTMC) is a stochastic process $\left(X_{t}\right)_{t \in \mathbb{Z} \geq 0}$ satisfying the Markov property

$$
\mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right]=\mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right]
$$

for all $n \geq 1$ and x_{0}, \ldots, x_{n+1}.

- In other words, conditioned on the present, the future is independent of the past.
- A DTMC is time homogeneous if

$$
\mathbb{P}\left[X_{n+1}=j \mid X_{n}=i\right]=\mathbb{P}\left[X_{m+1}=j \mid X_{m}=i\right]
$$

for all i, j and all times n, m.

- From now on, unless specified otherwise, a DTMC is assumed to be time homogeneous.

Transition matrix

A DTMC is completely specified by the following pieces of information.

- The state space S, which is the collection of all possible values that X_{0}, X_{1}, \ldots, could take.
- The initial state X_{0}.
- The transition probabilities

$$
p_{i j}:=\mathbb{P}\left[X_{n+1}=j \mid X_{n}=i\right] \quad \forall i, j \in S .
$$

- By time homogeneity, the right hand side depends only on i, j and not on n.
- It will be useful to combine all of the transition probabilities into an $|S| \times|S|$ transition matrix P,

$$
(P)_{i j}:=p_{i j} .
$$

- Note that P is row-stochastic i.e.

$$
\sum_{j \in S} p_{i j}=1 \quad \forall i \in S
$$

Examples

Two state Markov chain.

- State space: $S=\{0,1\}$.
- Transition matrix:

$$
\left(\begin{array}{cc}
1-p & p \\
q & 1-q,
\end{array}\right)
$$

for some $p, q \in[0,1]$.

Examples

Symmetric simple random walk on the integers.

- What is the state space?
- What are the transition probabilities?

Examples

Gambler's ruin stopped at $-\$ 100$ or $\$ 200$.

- What is the state space?
- What are the transition probabilities?
- A state $i \in S$ is called absorbing if $p_{i i}=1$.
- What are the absorbing states, if any?

Examples

Branching process with $Z_{0}=1$ and offspring distribution ξ.

- What is the state space?
- What are the transition probabilities?
- What are the absorbing states, if any?

Examples

Coupon collector. There are n different types of coupons, say, $\{1, \ldots, n\}$. Each day you get a uniformly random coupon (repetitions allowed). You stop once you've collected all n types of coupons.

Let X_{i} denote the number of different types of coupons you've collected by the end of day i. You start with $X_{0}=0$ coupons.

- What is the state space?
- What are the transition probabilities?
- Are there any absorbing states?
- On the problem set, you will study the time it takes to collect all n types of coupons.

Examples

Random walk on a graph. Let $G=(V, E)$ be an undirected graph on vertices $V=\{1, \ldots, n\}$ and edges E. We start at the vertex v_{0} and at every time, move to a uniformly random neighbor of the current vertex.

Let X_{i} denote our position at time i.

- What is the state space?
- What are the transition probabilities?
- Are there any absorbing states?

Examples

Simple random walk on the n-dimensional hypercube. The n-dimensional hypercube is the undirected graph on $V=\{0,1\}^{n}$ where $u, v \in V$ are connected by an edge $e \in E$ if and only if u and v differ in exactly one coordinate.

- What is the state space?
- What are the transition probabilities?
- Starting from $(0,0, \ldots, 0)$, can the random walk hit $(1,1, \ldots, 1)$ in an even number of steps?

Examples

Lazy random walk on the n-dimensional hypercube. Transition matrix

$$
P_{\text {lazy }}=\frac{1}{2} I+\frac{1}{2} P_{\text {simple }},
$$

where I is the $2^{n} \times 2^{n}$ identity matrix and $P_{\text {simple }}$ is the transition matrix of the simple random walk on the n-dimensional hypercube.

- What is this Markov chain doing?
- Starting at $(0,0, \ldots, 0)$, can the random walk hit $(1,1, \ldots, 1)$ in an even number of steps?

Examples

The Ehrenfest urn. n balls are distributed among two urns, urn A and urn B. At each time, we select a ball uniformly at random and move it from its current urn to the other urn.

- How can we model this as a Markov chain?

Examples

Polya's urn. We start with a single urn containing a red ball and a white ball. At each time, we select a ball uniformly at random and return it to the urn along with a new ball of the same color.

- How can we model this as a Markov chain?
- Let R_{k} denote the number of red balls in the urn after k new balls have been added. What are the possible values that R_{k} can take?
- On the homework, you will find the distribution of R_{k}.

Examples

Free throws. Consider a basketball player who makes free throws with the following probabilities
$1 / 2$ if she missed the last two times
$2 / 3$ if she made one of the last two throws
$3 / 4$ if she made both of her last two throws.

- Can this be modelled as a Markov chain?
- What is the state space?
- What are the transition probabilities?

Multi-step transition probabilities

- The transition probability $p_{i j}$ tells us the probability of going from i to j in one step, i.e.

$$
p_{i j}=\mathbb{P}\left[X_{1}=j \mid X_{0}=i\right] .
$$

- What about the probability of going from i to j in two steps i.e. what is

$$
p_{i j}^{2}:=\mathbb{P}\left[X_{2}=j \mid X_{0}=i\right] ?
$$

- Well, to go from i to j in two steps, we must go from i to some state $k \in \Omega$ in one step and then from k to j in one step.

Multi-step transition probabilities

Using the law of total probability, we have

$$
\begin{aligned}
\mathbb{P}\left[X_{2}=j \mid X_{0}=i\right] & =\sum_{k \in \Omega} \mathbb{P}\left[X_{1}=k \wedge X_{2}=j \mid X_{0}=i\right] \\
& =\sum_{k \in \Omega} \mathbb{P}\left[X_{1}=k \mid X_{0}=i\right] \mathbb{P}\left[X_{2}=j \mid X_{0}=i \wedge X_{1}=k\right] \\
& =\sum_{k \in \Omega} \mathbb{P}\left[X_{1}=k \mid X_{0}=i\right] \mathbb{P}\left[X_{2}=j \mid X_{1}=k\right] \\
& =\sum_{k \in \Omega} p_{i k} p_{k j} \\
& =\left(P^{2}\right)_{i j} .
\end{aligned}
$$

Multi-step transition probabilities

- There is nothing special about two steps here and you should check that the same argument gives

$$
p_{i j}^{n}:=\mathbb{P}\left[X_{n}=j \mid X_{0}=i\right]=\left(P^{n}\right)_{i j} \quad \forall n \geq 1
$$

- Since for any non-negative integers ℓ, m,

$$
P^{\ell+m}=P^{\ell} P^{m}
$$

we obtain the Chapman-Kolmogorov equations

$$
p_{i j}^{\ell+m}=\sum_{k \in \Omega} p_{i k}^{\ell} p_{k j}^{m} .
$$

